Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 92(3): 035102, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820049

RESUMO

This paper reports the experimental, analytical, and numerical study of resistive-nanoindentation tests performed on gold samples (bulk and thin film). First, the relevant contributions to electrical contact resistance are discussed and analytically described. A brief comparison of tests performed on gold and on natively oxidized metals highlights the high reproducibility and the voltage-independence of experiments on gold (thanks to its oxide-free surface). Then, the evolution of contact resistance during nanoindentation is fully explained in terms of electronic transport regimes: starting from tunneling, electronic transport is then driven by ballistic conduction before ending with pure diffusive conduction. The corresponding analytical expressions, as well as their validity domains, are determined and compared with experimental data, showing excellent agreement. From there, focus is made on the diffusive regime. Resistive-nanoindentation outputs are fully described by analytical and finite-element modeling. The developed numerical framework allows a better understanding of the main parameters: it first assesses the technique capabilities (validity domains, sensitivity to tip defect, sensitivity to rheology, effect of an oxide layer, and so on), but it also validates the different assumptions made on current line distribution. Finally, it is shown that a simple calibration procedure allows a well-resolved monitoring of the contact area during resistive-nanoindentation performed on samples with complex rheologies (ductile thin film on an elastic substrate). Comparison to analytical and numerical approaches highlights the strength of resistive-nanoindentation for continuous area monitoring.

2.
Sci Rep ; 9(1): 1883, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760788

RESUMO

TiO2 photocatalyst is of interest for antimicrobial coatings on hospital touch-surfaces. Recent research has focused on visible spectrum enhancement of photocatalytic activity. Here, we report TiO2 with a high degree of nanostructure, deposited on stainless steel as a solid layer more than 10 µm thick by pulsed-pressure-MOCVD. The TiO2 coating exhibits a rarely-reported microstructure comprising anatase and rutile in a composite with amorphous carbon. Columnar anatase single crystals are segmented into 15-20 nm thick plates, resulting in a mille-feuilles nanostructure. Polycrystalline rutile columns exhibit dendrite generation resembling pine tree strobili. We propose that high growth rate and co-deposition of carbon contribute to formation of the unique nanostructures. High vapor flux produces step-edge instabilities in the TiO2, and solid carbon preferentially co-deposits on certain high energy facets. The equivalent effective surface area of the nanostructured coating is estimated to be 100 times higher than standard TiO2 coatings and powders. The coatings prepared on stainless steel showed greater than 3-log reduction in viable E coli after 4 hours visible light exposure. The pp-MOCVD approach could represent an up-scalable manufacturing route for supported catalysts of functional nanostructured materials without having to make nanoparticles.


Assuntos
Carbono/química , Luz , Nanoestruturas/química , Titânio/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Catálise , Escherichia coli/efeitos dos fármacos , Nanoestruturas/toxicidade , Aço Inoxidável/química , Propriedades de Superfície
3.
Nat Commun ; 9(1): 5249, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30531806

RESUMO

Interfacial toughening in composite materials is reasonably well understood for static loading, but little is known for cyclic loading. Here, we demonstrate that introducing an interfacial molecular nanolayer at the metal-ceramic interface of a layered polymer-metal-ceramic stack triples the fracture energy for ~75-300 Hz loading, yielding 40% higher values than the static-loading fracture energy. We show that this unexpected frequency-dependent toughening is underpinned by nanolayer-induced interface strengthening, which facilitates load transfer to, and plasticity in, the polymer layer. Above a threshold interfacial bond strength, the toughening magnitude and frequency range are primarily controlled by the frequency- and temperature-dependent rheological properties of the polymer. These results indicate the tunability of the toughening behavior through suitable choice of interfacial molecular layers and polymers. Our findings open up possibilities for realizing novel composites with inorganic-organic interfaces, e.g., arresting crack growth or stimulating controlled fracture triggered by loads with specific frequency characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...