Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35649236

RESUMO

In this work, aqueous solutions of two prototypical ionic liquids (ILs), [BMIM][BF4] and [BMIM][TfO], were investigated by UV Raman spectroscopy and small-angle neutron scattering (SANS) in the water-rich domain, where strong heterogeneities at mesoscopic length scales (microheterogeneity) were expected. Analyzing Raman data by a differential method, the solute-correlated (SC) spectrum was extracted from the OH stretching profiles, emphasizing specific hydration features of the anions. SC-UV Raman spectra pointed out the molecular structuring of the interfacial water in these microheterogeneous IL/water mixtures, in which IL aggregates coexist with bulk water domains. The organization of the interfacial water differs for the [BMIM][BF4] and [BMIM][TfO] solutions, being affected by specific anion-water interactions. In particular, in the case of [BMIM][BF4], which forms weaker H-bonds with water, the aggregation properties clearly depend on concentration, as reflected by local changes in the interfacial water. On the other hand, stronger water-anion hydrogen bonds and more persistent hydration layers were observed for [BMIM][TfO], which likely prevent changes in IL aggregates. The modeling of SANS profiles, extended to [BPy][BF4] and [BPy][TfO], evidences the occurrence of significant concentration fluctuations for all of the systems: this appears as a rather general phenomenon that can be ascribed to the presence of IL aggregation, mainly induced by (cation-driven) hydrophobic interactions. Nevertheless, larger concentration fluctuations were observed for [BMIM][BF4], suggesting that anion-water interactions are relevant in modulating the microheterogeneity of the mixture.

2.
Life (Basel) ; 12(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35455063

RESUMO

The multi-scale dynamics of aqueous solutions of the hydrophilic peptide N-acetyl-glycine-methylamide (NAGMA) have been investigated through extended frequency-range depolarized light scattering (EDLS), which enables the broad-band detection of collective polarizability anisotropy fluctuations. The results have been compared to those obtained for N-acetyl-leucinemethylamide (NALMA), an amphiphilic peptide which shares with NAGMA the same polar backbone, but also contains an apolar group. Our study indicates that the two model peptides induce similar effects on the fast translational dynamics of surrounding water. Both systems slow down the mobility of solvating water molecules by a factor 6-8, with respect to the bulk. Moreover, the two peptides cause a comparable far-reaching spatial perturbation extending to more than two hydration layers in diluted conditions. The observed concentration dependence of the hydration number is explained considering the random superposition of different hydration shells, while no indication of solute aggregation phenomena has been found. The results indicate that the effect on the dynamics of water solvating the amphiphilic peptide is dominated by the hydrophilic backbone. The minor impact of the hydrophobic moiety on hydration features is consistent with structural findings derived by Fourier transform infrared (FTIR) measurements, performed in attenuated total reflectance (ATR) configuration. Additionally, we give evidence that, for both systems, the relaxation mode in the GHz frequency range probed by EDLS is related to solute rotational dynamics. The rotation of NALMA occurs at higher timescales, with respect to the rotation of NAGMA; both processes are significantly slower than the structural dynamics of hydration water, suggesting that solute and solvent motions are uncoupled. Finally, our results do not indicate the presence of super-slow water (relaxation times in the order of tens of picoseconds) around the peptides investigated.

3.
Life (Basel) ; 11(10)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34685367

RESUMO

We combined broad-band depolarized light scattering and infrared spectroscopies to study the properties of hydration water in a lysozyme-trehalose aqueous solution, where trehalose is present above the concentration threshold (30% in weight) relevant for biopreservation. The joint use of the two different techniques, which were sensitive to inter-and intra-molecular degrees of freedom, shed new light on the molecular mechanism underlying the interaction between the three species in the mixture. Thanks to the comparison with the binary solution cases, we were able to show that, under the investigated conditions, the protein, through preferential hydration, remains strongly hydrated even in the ternary mixture. This supported the water entrapment scenario, for which a certain amount of water between protein and sugar protects the biomolecule from damage caused by external agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...