Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Trop ; 232: 106484, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35483428

RESUMO

Giardiasis is an intestinal disease caused by the parasite protozoan Giardia intestinalis. For more than five decades, the treatment of this disease has been based on compounds such as nitroimidazoles and benzimidazoles. The parasite's adverse effects and therapeutic failure are largely recognized. Therefore, it is necessary to develop new forms of chemotherapy treatment against giardiasis. Lysine deacetylases (KDACs), which remove an acetyl group from lysine residues in histone and non-histone proteins as tubulin, are found in the Giardia genome and can become an interesting option for giardiasis treatment. In the present study, we evaluated the effects of 4-[(10H-phenothiazin-10-yl)methyl]-N-hydroxybenzamide, a new class I/II KDAC inhibitor, on G. intestinalis growth, cytoskeleton, and ultrastructure organization. This compound decreased parasite proliferation and viability and displayed an IC50 value of 179 nM. Scanning electron microscopy revealed the presence of protrusions on the cell surface after treatment. In addition, the vacuoles containing concentric membranous lamella and glycogen granules were observed in treated trophozoites. The cell membrane appeared deformed just above these vacuoles. Alterations on the microtubular cytoskeleton of the parasite were not observed after drug exposure. The number of diving cells with incomplete cytokinesis increased after treatment, indicating that the compound can interfere in the late steps of cell division. Our results indicate that 4-[(10H-phenothiazin-10-yl)methyl]-N-hydroxybenzamide should be explored to develop new therapeutic compounds for treating giardiasis.


Assuntos
Giardia lamblia , Giardíase , Animais , Giardia , Giardíase/tratamento farmacológico , Lisina/farmacologia , Trofozoítos
2.
Molecules ; 25(5)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32131509

RESUMO

Inhibitors of enzymes in essential cellular pathways are potent probes to decipher intricate physiological functions of biomolecules. The analysis of Arabidopsis thaliana sterol profiles upon treatment with a series of azasterols reveals a specific in vivo inhibition of SMT2, a plant sterol-C-methyltransferase acting as a branch point between the campesterol and sitosterol biosynthetic segments in the pathway. Side chain azasteroids that modify sitosterol homeostasis help to refine its particular function in plant development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/metabolismo , Azasteroides/farmacologia , Inibidores Enzimáticos/farmacologia , Metiltransferases , Fitosteróis/biossíntese , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/metabolismo , Azasteroides/química , Inibidores Enzimáticos/química , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo
3.
Int J Med Microbiol ; 309(2): 130-142, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30665874

RESUMO

Giardia trophozoites have developed resistance mechanisms to currently available compounds, leading to treatment failures. In this context, the development of new additional agents is mandatory. Sirtuins, which are class III NAD+-dependent histone deacetylases, have been considered important targets for the development of new anti-parasitic drugs. Here, we evaluated the activity of KH-TFMDI, a novel 3-arylideneindolin-2-one-type sirtuin inhibitor, on G. intestinalis trophozoites. This compound decreased the trophozoite growth presenting an IC50 value lower than nicotinamide, a moderately active inhibitor of yeast and human sirtuins. Light and electron microscopy analysis showed the presence of multinucleated cell clusters suggesting that the cytokinesis could be compromised in treated trophozoites. Cell rounding, concomitantly with the folding of the ventro-lateral flange and flagella internalization, was also observed. These cells eventually died by a mechanism which lead to DNA/nuclear damage, formation of multi-lamellar bodies and annexin V binding on the parasite surface. Taken together, these data show that KH-TFMDI has significant effects against G. intestinalis trophozoites proliferation and structural organization and suggest that histone deacetylation pathway should be explored on this protozoon as target for chemotherapy.


Assuntos
Antiprotozoários/farmacologia , Giardia lamblia/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Trofozoítos/efeitos dos fármacos , Células CACO-2 , Citocinese/efeitos dos fármacos , Giardia lamblia/citologia , Giardia lamblia/crescimento & desenvolvimento , Humanos , Concentração Inibidora 50 , Microscopia , Microscopia Eletrônica , Testes de Sensibilidade Parasitária , Trofozoítos/citologia , Trofozoítos/crescimento & desenvolvimento
4.
Apoptosis ; 22(9): 1169-1188, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28685254

RESUMO

Treatment of leishmaniasis involves the use of antimonials, miltefosine, amphotericin B or pentamidine. However, the side effects of these drugs and the reports of drug-resistant parasites demonstrate the need for new treatments that are safer and more efficacious. Histone deacetylase inhibitors are a new class of compounds with potential to treat leishmaniasis. Herein, we evaluated the effects of KH-TFMDI, a novel histone deacetylase inhibitor, on Leishmania amazonensis promastigotes and intracellular amastigotes. The IC50 values of this compound for promastigotes and intracellular amastigotes were 1.976 and 1.148 µM, respectively, after 72 h of treatment. Microscopic analyses revealed that promastigotes became elongated and thinner in response to KH-TFMDI, indicating changes in cytoskeleton organization. Immunofluorescence microscopy, western blotting and flow cytometry using an anti-acetylated tubulin antibody revealed an increase in the expression of acetylated tubulin. Furthermore, transmission electron microscopy revealed several ultrastructural changes, such as (a) mitochondrial swelling, followed by the formation of many vesicles inside the matrix; (b) presence of lipid bodies randomly distributed through the cytoplasm; (c) abnormal chromatin condensation; and (d) formation of blebs on the plasma membrane. Physiological studies for mitochondrial function, flow cytometry with propidium iodide and TUNEL assay confirmed the alterations in the mitochondrial metabolism, cell cycle, and DNA fragmentation, respectively, which could result to cell death by mechanisms related to apoptosis-like. All these together indicate that histone deacetylases are promising targets for the development of new drugs to treat Leishmania, and KH-TFMDI is a promising drug candidate that should be tested in vivo.


Assuntos
Compostos de Benzilideno/farmacologia , Morte Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Indóis/farmacologia , Leishmania/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Sirtuínas/antagonistas & inibidores , Animais , Antiparasitários/farmacologia , Antiparasitários/toxicidade , Apoptose/efeitos dos fármacos , Compostos de Benzilideno/toxicidade , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/metabolismo , Inibidores de Histona Desacetilases/toxicidade , Indóis/toxicidade , Concentração Inibidora 50 , Leishmania/citologia , Leishmania/crescimento & desenvolvimento , Leishmania/ultraestrutura , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Estresse Oxidativo/efeitos dos fármacos
5.
Parasitology ; 141(6): 814-25, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24670415

RESUMO

Chagas disease, which is caused by the parasite Trypanosoma cruzi, affects approximately 7-8 million people in Latin America. The drugs available to treat this disease are ineffective against chronic phase disease and are associated with toxic side effects. Therefore, the development of new compounds that can kill T. cruzi at low concentrations is critically important. Herein, we report the effects of a novel 3-arylideneindolin-2-one that inhibits sirtuins, which are highly conserved proteins that are involved in a variety of physiological processes. The compound KH-TFMDI was tested against the epimastigote, trypomastigote and amastigote forms of T. cruzi, and its effects were evaluated using flow cytometry, light and electron microscopy. KH-TFMDI inhibited the replication of T. cruzi intracellular amastigotes with an IC50 of 0.5 ± 0.2 µM, which is significantly lower than the IC50 of benznidazole. The compound also lysed the highly infectious bloodstream trypomastigotes (BST) with LC50 values of 0.8 ± 0.3 µM at 4 °C and 2.5 ± 1.1 µM at 37 °C. KH-TFMDI inhibited cytokinesis and induced several morphological changes in the parasite, leading to its death by apoptosis and autophagy. This study highlights sirtuins as a potential new target for Chagas disease therapy.


Assuntos
Doença de Chagas/tratamento farmacológico , Histona Desacetilases do Grupo III/antagonistas & inibidores , Indóis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Doença de Chagas/parasitologia , Indóis/química , Concentração Inibidora 50 , Microscopia Eletrônica , Microscopia de Fluorescência , Sirtuínas/antagonistas & inibidores , Tripanossomicidas/química , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/fisiologia , Trypanosoma cruzi/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA