Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroendocrinol ; 35(5): e13284, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37157154

RESUMO

In goats, early exposure of spring-born females to sexually active bucks induces an early puberty onset assessed by the first ovulation. This effect is found when females are continuously exposed well before the male breeding season starting in September. The first aim of this study was to evaluate whether a shortened exposure of females to males could also lead to early puberty. We assessed the onset of puberty in Alpine does isolated from bucks (ISOL), exposed to wethers (CAS), exposed to intact bucks from the end of June (INT1), or mid-August (INT2). Intact bucks became sexually active in mid-September. At the beginning of October, 100% of INT1 and 90% of INT2 exposed does ovulated, in contrast to the ISOL (0%) and CAS (20%) groups. This demonstrated that contact with males that become sexually active is the main factor prompting precocious puberty in females. Furthermore, a reduced male exposure during a short window before the breeding season is sufficient to induce this phenomenon. The second aim was to investigate the neuroendocrine changes induced by male exposure. We found a significant increase in kisspeptin immunoreactivity (fiber density and number of cell bodies) in the caudal part of the arcuate nucleus of INT1 and INT2 exposed females. Thus, our results suggest that sensory stimuli from sexually active bucks (e.g., chemosignals) may trigger an early maturation of the ARC kisspeptin neuronal network leading to gonadotropin-releasing hormone secretion and first ovulation.


Assuntos
Núcleo Arqueado do Hipotálamo , Kisspeptinas , Masculino , Feminino , Animais , Maturidade Sexual , Hormônio Liberador de Gonadotropina , Cabras , Neurônios
2.
Biol Lett ; 19(2): 20220441, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36815586

RESUMO

Most small rodent species display cyclic fluctuations in their population density. The mechanisms behind these cyclical variations are not yet clearly understood. Density-dependent effects on reproductive function could affect these population variations. The fossorial water vole ecotype, Arvicola terrestris, exhibits multi-year cyclical dynamics with outbreak peaks. Here, we monitored different water vole populations over 3 years, in spring and autumn, to evaluate whether population density is related to male reproductive physiology. Our results show an effect of season and inter-annual factors on testis mass, plasmatic testosterone level, and androgen-dependent seminal vesicle mass. By contrast, population density does not affect any of these parameters, suggesting a lack of modulation of population dynamics by population density.


Assuntos
Arvicolinae , Animais , Masculino , Densidade Demográfica , Estações do Ano , Dinâmica Populacional , Arvicolinae/fisiologia
3.
J Exp Biol ; 224(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34494651

RESUMO

Mammals living at temperate latitudes typically display annual cyclicity in their reproductive activity: births are synchronized when environmental conditions are most favorable. In a majority of these species, day length is the main proximate factor used to anticipate seasonal changes and to adapt physiology. The brain integrates this photoperiodic signal through key hypothalamic structures, which regulate the reproductive axis. In this context, our study aimed to characterize regulations that occur along the hypothalamo-pituitary-gonadal (HPG) axis in male fossorial water voles (Arvicola terrestris, also known as Arvicola amphibius) throughout the year and to further probe the implication of photoperiod in these seasonal regulations. Our monthly field monitoring showed dramatic seasonal changes in the morphology and activity of reproductive organs, as well as in the androgen-dependent lateral scent glands. Moreover, our data uncovered seasonal variations at the hypothalamic level. During the breeding season, kisspeptin expression in the arcuate nucleus (ARC) decreases, while RFRP3 expression in the dorsomedial hypothalamic nucleus (DMH) increases. Our follow-up laboratory study revealed activation of the reproductive axis and confirmed a decrease in kisspeptin expression in males exposed to a long photoperiod (summer condition) compared with those maintained under a short photoperiod (winter condition) that retain all features reminiscent of sexual inhibition. Altogether, our study characterizes neuroendocrine and anatomical markers of seasonal reproductive rhythmicity in male water voles and further suggests that these seasonal changes are strongly impacted by photoperiod.


Assuntos
Arvicolinae , Fotoperíodo , Animais , Hipotálamo , Masculino , Reprodução , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...