Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 15: 1387924, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915794

RESUMO

Introduction: A common practice in clinical settings is the use of the Epworth Sleepiness Scale (ESS) and apnea-hypopnea index (AHI) to demonstrate the severity of obstructive sleep apnea (OSA). However, several instances were noted where there were discrepancies in the reported severity between Epworth scores and AHI in our patient sample, prompting an investigation into whether OSA severity as demonstrated by AHI or predicted by ESS quantification of sleepiness is primarily responsible for inconsistencies. Methods: Discrepancies were examined between Epworth scores and AHI by categorizing patients into two categories of inconsistency: individuals with either ESS < 10 and AHI ≥ 15 events/h or ESS ≥ 10 and AHI < 15 events/h. The potential influence of sex on these categories was addressed by assessing whether a significant difference was present between mean Epworth scores and AHI values for men and women in the sample. We investigated BMI both by itself as its own respective variable and with respect to the sex of the individuals, along with a consideration into the role of anxiety. Furthermore, we tested anxiety with respect to sex. Results: In the first category of inconsistency the average ESS of 5.27 ± 0.33 suggests a normal level of daytime sleepiness. However, this contrasts with the average AHI of 32.26 ± 1.82 events/h which is indicative of severe OSA. In the second category the average ESS of 14.29 ± 0.47 suggests severe daytime sleepiness, contradicting the average AHI of 9.16 ± 0.44 events/h which only indicates mild OSA. Sex, BMI (both as a variable by itself and with respect to sex), and anxiety (both as a variable by itself and with respect to sex) contributed to observed inconsistencies. Conclusion: The findings of our study substantiate our hypothesis that Epworth scores should be de-emphasized in the assessment of OSA and a greater importance should be placed on measures like AHI. While Epworth scores offer insights into patients' daytime sleepiness levels and the perceived severity of their OSA, the inconsistencies highlighted in our results when compared to AHI-based OSA severity underscore their potential inaccuracy. Caution is advised when utilizing Epworth scores for evaluating OSA severity in clinical settings.

2.
Adv Sci (Weinh) ; : e2300747, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38810146

RESUMO

In partial onset epilepsy, seizures arise focally in the brain and often propagate. Patients frequently become refractory to medical management, leaving neurosurgery, which can cause neurologic deficits, as a primary treatment. In the cortex, focal seizures spread through horizontal connections in layers II/III, suggesting that severing these connections can block seizures while preserving function. Focal neocortical epilepsy is induced in mice, sub-surface cuts are created surrounding the seizure focus using tightly-focused femtosecond laser pulses, and electrophysiological recordings are acquired at multiple locations for 3-12 months. Cuts reduced seizure frequency in most animals by 87%, and only 5% of remaining seizures propagated to the distant electrodes, compared to 80% in control animals. These cuts produced a modest decrease in cortical blood flow that recovered and left a ≈20-µm wide scar with minimal collateral damage. When placed over the motor cortex, cuts do not cause notable deficits in a skilled reaching task, suggesting they hold promise as a novel neurosurgical approach for intractable focal cortical epilepsy.

3.
Biomolecules ; 13(5)2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37238612

RESUMO

Neutrophils are the most abundant leukocyte in circulation and are the first line of defense after an infection or injury. Neutrophils have a broad spectrum of functions, including phagocytosis of microorganisms, the release of pro-inflammatory cytokines and chemokines, oxidative burst, and the formation of neutrophil extracellular traps. Traditionally, neutrophils were thought to be most important for acute inflammatory responses, with a short half-life and a more static response to infections and injury. However, this view has changed in recent years showing neutrophil heterogeneity and dynamics, indicating a much more regulated and flexible response. Here we will discuss the role of neutrophils in aging and neurological disorders; specifically, we focus on recent data indicating the impact of neutrophils in chronic inflammatory processes and their contribution to neurological diseases. Lastly, we aim to conclude that reactive neutrophils directly contribute to increased vascular inflammation and age-related diseases.


Assuntos
Armadilhas Extracelulares , Doenças do Sistema Nervoso , Humanos , Neutrófilos , Citocinas , Fagocitose , Inflamação
4.
bioRxiv ; 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36824768

RESUMO

INTRODUCTION: In this study, we explore the role of oxidative stress produced by NOX2-containing NADPH oxidase as a molecular mechanism causing capillary stalling and cerebral blood flow deficits in the APP/PS1 mouse model of AD. METHODS: We inhibited NOX2 in APP/PS1 mice by administering a 10 mg/kg dose of the peptide inhibitor gp91-ds-tat i.p., for two weeks. We used in vivo two-photon imaging to measure capillary stalling, penetrating arteriole flow, and vascular inflammation. We also characterized short-term memory function and gene expression changes in cerebral microvessels. RESULTS: We found that after NOX2 inhibition capillary stalling, as well as parenchymal and vascular inflammation, were significantly reduced. In addition, we found a significant increase in penetrating arteriole flow, followed by an improvement in short-term memory, and downregulation of inflammatory gene expression pathways. DISCUSSION: Oxidative stress is a major mechanism leading to microvascular dysfunction in AD, and represents an important therapeutic target.

6.
Neurosci Insights ; 17: 26331055221109254, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873789

RESUMO

Vascular dysfunction plays a critical role in the development of Alzheimer's disease. Cerebral blood flow reductions of 10% to 25% present early in disease pathogenesis. Vascular Endothelial Growth Factor-A (VEGF-A) drives angiogenesis, which typically addresses blood flow reductions and global hypoxia. However, recent evidence suggests aberrant VEGF-A signaling in Alzheimer's disease may undermine its physiological angiogenic function. Instead of improving cerebral blood flow, VEGF-A contributes to brain capillary stalls and blood flow reductions, likely accelerating cognitive decline. In this commentary, we explore the evidence for pathological VEGF signaling in Alzheimer's disease, and discuss its implications for disease therapy.

7.
Alzheimers Dement (Amst) ; 14(1): e12310, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35496373

RESUMO

The field of vascular contributions to cognitive impairment and dementia (VCID) is evolving rapidly. Research in VCID encompasses topics aiming to understand, prevent, and treat the detrimental effects of vascular disease burden in the human brain. In this perspective piece, early career researchers (ECRs) in the field provide an overview of VCID, discuss past and present efforts, and highlight priorities for future research. We emphasize the following critical points as the field progresses: (a) consolidate existing neuroimaging and fluid biomarkers, and establish their utility for pharmacological and non-pharmacological interventions; (b) develop new biomarkers, and new non-clinical models that better recapitulate vascular pathologies; (c) amplify access to emerging biomarker and imaging techniques; (d) validate findings from previous investigations in diverse populations, including those at higher risk of cognitive impairment (e.g., Black, Hispanic, and Indigenous populations); and (e) conduct randomized controlled trials within diverse populations with well-characterized vascular pathologies emphasizing clinically meaningful outcomes.

8.
Brain ; 145(4): 1449-1463, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35048960

RESUMO

Increased incidence of stalled capillary blood flow caused by adhesion of leucocytes to the brain microvascular endothelium leads to a 17% reduction of cerebral blood flow and exacerbates short-term memory loss in multiple mouse models of Alzheimer's disease. Here, we report that vascular endothelial growth factor (VEGF) signalling at the luminal side of the brain microvasculature plays an integral role in the capillary stalling phenomenon of the APP/PS1 mouse model. Administration of the anti-mouse VEGF-A164 antibody, an isoform that inhibits blood-brain barrier hyperpermeability, reduced the number of stalled capillaries within an hour of injection, leading to an immediate increase in average capillary blood flow but not capillary diameter. VEGF-A inhibition also reduced the overall endothelial nitric oxide synthase protein concentrations, increased occludin levels and decreased the penetration of circulating Evans Blue dye across the blood-brain barrier into the brain parenchyma, suggesting increased blood-brain barrier integrity. Capillaries prone to neutrophil adhesion after anti-VEGF-A treatment also had lower occludin concentrations than flowing capillaries. Taken together, our findings demonstrate that VEGF-A signalling in APP/PS1 mice contributes to aberrant endothelial nitric oxide synthase /occludin-associated blood-brain barrier permeability, increases the incidence of capillary stalls, and leads to reductions in cerebral blood flow. Reducing leucocyte adhesion by inhibiting luminal VEGF signalling may provide a novel and well-tolerated strategy for improving brain microvascular blood flow in Alzheimer's disease patients.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Capilares , Permeabilidade Capilar , Circulação Cerebrovascular/fisiologia , Modelos Animais de Doenças , Humanos , Camundongos , Óxido Nítrico Sintase Tipo III/metabolismo , Ocludina/metabolismo , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular/metabolismo
9.
J Cereb Blood Flow Metab ; 41(7): 1501-1516, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33444096

RESUMO

Reductions of baseline cerebral blood flow (CBF) of ∼10-20% are a common symptom of Alzheimer's disease (AD) that appear early in disease progression and correlate with the severity of cognitive impairment. These CBF deficits are replicated in mouse models of AD and recent work shows that increasing baseline CBF can rapidly improve the performance of AD mice on short term memory tasks. Despite the potential role these data suggest for CBF reductions in causing cognitive symptoms and contributing to brain pathology in AD, there remains a poor understanding of the molecular and cellular mechanisms causing them. This review compiles data on CBF reductions and on the correlation of AD-related CBF deficits with disease comorbidities (e.g. cardiovascular and genetic risk factors) and outcomes (e.g. cognitive performance and brain pathology) from studies in both patients and mouse models, and discusses several potential mechanisms proposed to contribute to CBF reductions, based primarily on work in AD mouse models. Future research aimed at improving our understanding of the importance of and interplay between different mechanisms for CBF reduction, as well as at determining the role these mechanisms play in AD patients could guide the development of future therapies that target CBF reductions in AD.


Assuntos
Doença de Alzheimer/patologia , Circulação Cerebrovascular , Transtornos Cerebrovasculares/complicações , Doença de Alzheimer/etiologia , Animais , Modelos Animais de Doenças , Humanos
10.
PLoS One ; 15(8): e0235691, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32857763

RESUMO

Exercise exerts a beneficial effect on the major pathological and clinical symptoms associated with Alzheimer's disease in humans and mouse models of the disease. While numerous mechanisms for such benefits from exercise have been proposed, a clear understanding of the causal links remains elusive. Recent studies also suggest that cerebral blood flow in the brain of both Alzheimer's patients and mouse models of the disease is decreased and that the cognitive symptoms can be improved when blood flow is restored. We therefore hypothesized that the mitigating effect of exercise on the development and progression of Alzheimer's disease may be mediated through an increase in the otherwise reduced brain blood flow. To test this idea, we performed a pilot study to examine the impact of three months of voluntary wheel running in a small cohort of ~1-year-old APP/PS1 mice on short-term memory function, brain inflammation, amyloid deposition, and baseline cerebral blood flow. Our findings that exercise led to a trend toward improved spatial short-term memory, reduced brain inflammation, markedly increased neurogenesis in the dentate gyrus, and a reduction in hippocampal amyloid-beta deposits are consistent with other reports on the impact of exercise on the progression of Alzheimer's related symptoms in mouse models. Notably, we did not observe any impact of wheel running on overall baseline blood flow nor on the incidence of non-flowing capillaries, a mechanism we recently identified as one contributing factor to cerebral blood flow deficits in mouse models of Alzheimer's disease. Overall, our findings add to the emerging picture of differential effects of exercise on cognition and blood flow in Alzheimer's disease pathology by showing that capillary stalling is not decreased following exercise.


Assuntos
Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/irrigação sanguínea , Terapia por Exercício , Presenilina-1/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Circulação Cerebrovascular , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Neurogênese , Condicionamento Físico Animal , Projetos Piloto , Presenilina-1/genética , Transgenes
11.
Sci Rep ; 10(1): 9884, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32555372

RESUMO

Obesity is linked to increased risk for and severity of Alzheimer's disease (AD). Cerebral blood flow (CBF) reductions are an early feature of AD and are also linked to obesity. We recently showed that non-flowing capillaries, caused by adhered neutrophils, contribute to CBF reduction in mouse models of AD. Because obesity could exacerbate the vascular inflammation likely underlying this neutrophil adhesion, we tested links between obesity and AD by feeding APP/PS1 mice a high fat diet (Hfd) and evaluating behavioral, physiological, and pathological changes. We found trends toward poorer memory performance in APP/PS1 mice fed a Hfd, impaired social interactions with either APP/PS1 genotype or a Hfd, and synergistic impairment of sensory-motor function in APP/PS1 mice fed a Hfd. The Hfd led to increases in amyloid-beta monomers and plaques in APP/PS1 mice, as well as increased brain inflammation. These results agree with previous reports showing obesity exacerbates AD-related pathology and symptoms in mice. We used a crowd-sourced, citizen science approach to analyze imaging data to determine the impact of the APP/PS1 genotype and a Hfd on capillary stalling and CBF. Surprisingly, we did not see an increase in the number of non-flowing capillaries or a worsening of the CBF deficit in APP/PS1 mice fed a Hfd as compared to controls, suggesting that capillary stalling is not a mechanistic link between a Hfd and increased severity of AD in mice. Reducing capillary stalling by blocking neutrophil adhesion improved CBF and short-term memory function in APP/PS1 mice, even when fed a Hfd.


Assuntos
Doença de Alzheimer/patologia , Circulação Cerebrovascular/fisiologia , Dieta Hiperlipídica , Neurônios/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Comportamento Animal , Vasos Sanguíneos/diagnóstico por imagem , Vasos Sanguíneos/fisiologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Genótipo , Masculino , Memória de Curto Prazo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Presenilina-1/genética
12.
J Cereb Blood Flow Metab ; 40(7): 1441-1452, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31495298

RESUMO

Alzheimer's disease is associated with a 20-30% reduction in cerebral blood flow. In the APP/PS1 mouse model of Alzheimer's disease, inhibiting neutrophil adhesion using an antibody against the neutrophil specific protein Ly6G was recently shown to drive rapid improvements in cerebral blood flow that was accompanied by an improvement in performance on short-term memory tasks. Here, in a longitudinal aging study, we assessed how far into disease development a single injection of anti-Ly6G treatment can acutely improve short-term memory function. We found that APP/PS1 mice as old as 15-16 months had improved performance on the object replacement and Y-maze tests of spatial and working short-term memory, measured at one day after anti-Ly6G treatment. APP/PS1 mice at 17-18 months of age or older did not show acute improvements in cognitive performance, although we did find that capillary stalls were still reduced and cerebral blood flow was still increased by 17% in 21-22-months-old APP/PS1 mice given anti-Ly6G antibody. These data add to the growing body of evidence suggesting that cerebral blood flow reductions are an important contributing factor to the cognitive dysfunction associated with neurodegenerative disease. Thus, interfering with neutrophil adhesion could be a new therapeutic approach for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Cognição , Animais , Antígenos Ly/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Memória de Curto Prazo , Camundongos
13.
Nat Neurosci ; 22(3): 413-420, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30742116

RESUMO

Cerebral blood flow (CBF) reductions in Alzheimer's disease patients and related mouse models have been recognized for decades, but the underlying mechanisms and resulting consequences for Alzheimer's disease pathogenesis remain poorly understood. In APP/PS1 and 5xFAD mice we found that an increased number of cortical capillaries had stalled blood flow as compared to in wild-type animals, largely due to neutrophils that had adhered in capillary segments and blocked blood flow. Administration of antibodies against the neutrophil marker Ly6G reduced the number of stalled capillaries, leading to both an immediate increase in CBF and rapidly improved performance in spatial and working memory tasks. This study identified a previously uncharacterized cellular mechanism that explains the majority of the CBF reduction seen in two mouse models of Alzheimer's disease and demonstrated that improving CBF rapidly enhanced short-term memory function. Restoring cerebral perfusion by preventing neutrophil adhesion may provide a strategy for improving cognition in Alzheimer's disease patients.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Memória/fisiologia , Neutrófilos/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Anticorpos/administração & dosagem , Antígenos Ly/administração & dosagem , Antígenos Ly/imunologia , Encéfalo/fisiopatologia , Capilares/fisiopatologia , Modelos Animais de Doenças , Feminino , Masculino , Memória/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Neurológicos , Neutrófilos/imunologia , Fragmentos de Peptídeos/metabolismo
14.
Sci Rep ; 8(1): 15770, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30361495

RESUMO

Many stroke survivors experience persisting episodic memory disturbances. Since hippocampal and para-hippocampal areas are usually spared from the infarcted area, alterations of memory processing networks remote from the ischemic brain region might be responsible for the observed clinical symptoms. To pinpoint changes in activity of hippocampal connections and their role in post-stroke cognitive impairment, we induced ischemic stroke by occlusion of the middle cerebral artery (MCAO) in adult rats and analyzed the functional and structural consequences using activity-dependent manganese (Mn2+) enhanced MRI (MEMRI) along with behavioral and histopathological analysis. MCAO caused stroke lesions of variable extent along with sensorimotor and cognitive deficits. Direct hippocampal injury occurred in some rats, but was no prerequisite for cognitive impairment. In healthy rats, injection of Mn2+ into the entorhinal cortex resulted in distribution of the tracer within the hippocampal subfields into the lateral septal nuclei. In MCAO rats, Mn2+ accumulated in the ipsilateral thalamus. Histopathological analysis revealed secondary thalamic degeneration 28 days after stroke. Our findings provide in vivo evidence that remote sensorimotor stroke modifies the activity of hippocampal-thalamic networks. In addition to potentially reversible alterations in signaling of these connections, structural damage of the thalamus likely reinforces dysfunction of hippocampal-thalamic circuitries.


Assuntos
Hipocampo/patologia , Rede Nervosa/patologia , Córtex Sensório-Motor/patologia , Acidente Vascular Cerebral/patologia , Tálamo/patologia , Animais , Transtornos Cognitivos/complicações , Transtornos Cognitivos/patologia , Gliose/complicações , Gliose/patologia , Infarto da Artéria Cerebral Média/patologia , Imageamento por Ressonância Magnética , Manganês/química , Modelos Neurológicos , Ratos Sprague-Dawley , Processamento de Sinais Assistido por Computador , Acidente Vascular Cerebral/complicações
15.
Nat Commun ; 8: 15277, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28541286

RESUMO

Haploinsufficiency of progranulin (PGRN) due to mutations in the granulin (GRN) gene causes frontotemporal lobar degeneration (FTLD), and complete loss of PGRN leads to a lysosomal storage disorder, neuronal ceroid lipofuscinosis (NCL). Accumulating evidence suggests that PGRN is essential for proper lysosomal function, but the precise mechanisms involved are not known. Here, we show that PGRN facilitates neuronal uptake and lysosomal delivery of prosaposin (PSAP), the precursor of saposin peptides that are essential for lysosomal glycosphingolipid degradation. We found reduced levels of PSAP in neurons both in mice deficient in PGRN and in human samples from FTLD patients due to GRN mutations. Furthermore, mice with reduced PSAP expression demonstrated FTLD-like pathology and behavioural changes. Thus, our data demonstrate a role of PGRN in PSAP lysosomal trafficking and suggest that impaired lysosomal trafficking of PSAP is an underlying disease mechanism for NCL and FTLD due to GRN mutations.


Assuntos
Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mutação , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Degeneração Lobar Frontotemporal/patologia , Granulinas , Haploinsuficiência , Humanos , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Lipofuscinoses Ceroides Neuronais/etiologia , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Neurônios/metabolismo , Progranulinas , Transporte Proteico
16.
J Cereb Blood Flow Metab ; 34(9): 1522-30, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24938399

RESUMO

Tissue tolerance to ischemia can be achieved by noxious stimuli that are below a threshold to cause irreversible damage ('preconditioning'). Understanding the mechanisms underlying preconditioning may lead to the identification of novel therapeutic targets for diseases such as stroke. We here used the oxidative chain inhibitor 3-nitropropionic acid (NPA) to induce ischemia tolerance in a rat middle cerebral artery occlusion (MCAO) stroke model. Cerebral blood flow (CBF) and structural integrity were characterized by longitudinal magnetic resonance imaging (MRI) in combination with behavioral, histologic, and biochemical assessment of NPA-preconditioned animals and controls. Using this approach we show that the ischemia-tolerant state is characterized by a lower energy charge potential and lower CBF, indicating a reduced baseline metabolic demand, and therefore a cellular mechanism of neural protection. Blood vessel density and structural integrity were not altered by NPA treatment. When subjected to MCAO, preconditioned animals had a characteristic MRI signature consisting of enhanced CBF maintenance within the ischemic territory and intraischemic reversal of the initial cytotoxic edema, resulting in reduced infarct volumes. Thus, our data show that tissue protection through preconditioning occurs early during ischemia and indicate that a reduced cellular metabolism is associated with tissue tolerance to ischemia.


Assuntos
Anti-Hipertensivos/farmacologia , Isquemia Encefálica , Circulação Cerebrovascular/efeitos dos fármacos , Precondicionamento Isquêmico/métodos , Fármacos Neuroprotetores/farmacologia , Nitrocompostos/farmacologia , Propionatos/farmacologia , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/prevenção & controle , Angiografia Cerebral , Modelos Animais de Doenças , Angiografia por Ressonância Magnética , Ratos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/prevenção & controle
17.
Development ; 140(13): 2823-7, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23720045

RESUMO

Neural stem/progenitor cells (NSPCs) generate new neurons throughout life in the mammalian hippocampus. Newborn granule cells mature over several weeks to functionally integrate into the pre-existing neural circuitry. Even though an increasing number of genes that regulate neuronal polarization and neurite extension have been identified, the cellular mechanisms underlying the extension of neurites arising from newborn granule cells remain largely unknown. This is mainly because of the current lack of longitudinal observations of neurite growth within the endogenous niche. Here we used a novel slice culture system of the adult mouse hippocampal formation combined with in vivo retroviral labeling of newborn neurons and longitudinal confocal imaging to analyze the mode and velocity of neurite growth extending from immature granule cells. Using this approach we show that dendritic processes show a linear growth pattern with a speed of 2.19±0.2 µm per hour, revealing a much faster growth dynamic than expected by snapshot-based in vivo time series. Thus, we here identified the growth pattern of neurites extending from newborn neurons within their niche and describe a novel technology that will be useful to monitor neuritic growth in physiological and disease states that are associated with altered dendritic morphology, such as rodent models of epilepsy.


Assuntos
Neurogênese/fisiologia , Neurônios/citologia , Animais , Diferenciação Celular/fisiologia , Giro Denteado/citologia , Hipocampo/citologia , Técnicas In Vitro , Camundongos , Neuritos , Neurogênese/genética , Neurônios/metabolismo
18.
J Neurosci ; 32(10): 3376-87, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22399759

RESUMO

Neural stem cells (NSCs) generate neurons throughout life in the hippocampal dentate gyrus (DG). How gene expression signatures differ among NSCs and immature neurons remains largely unknown. We isolated NSCs and their progeny in the adult DG using transgenic mice expressing a GFP reporter under the control of the Sox2 promoter (labeling NSCs) and transgenic mice expressing a DsRed reporter under the control of the doublecortin (DCX) promoter (labeling immature neurons). Transcriptome analyses revealed distinct gene expression profiles between NSCs and immature neurons. Among the genes that were expressed at significantly higher levels in DG NSCs than in immature neurons was the growth factor insulin-like growth factor 2 (IGF2). We show that IGF2 selectively controls proliferation of DG NSCs in vitro and in vivo through AKT-dependent signaling. Thus, by gene expression profiling of NSCs and their progeny, we have identified IGF2 as a novel regulator of adult neurogenesis.


Assuntos
Células-Tronco Adultas/fisiologia , Diferenciação Celular/genética , Perfilação da Expressão Gênica/métodos , Hipocampo/fisiologia , Fator de Crescimento Insulin-Like II/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/genética , Células-Tronco Adultas/citologia , Animais , Células Cultivadas , Proteína Duplacortina , Feminino , Hipocampo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/citologia , Neurônios/citologia , Neurônios/fisiologia , Transcriptoma/genética
19.
Plant J ; 62(5): 807-16, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20230491

RESUMO

MADS-domain transcription factors play pivotal roles in various developmental processes. The lack of simple loss-of-function phenotypes provides impediments to understand the biological function of some of the MADS-box transcription factors. Here we have characterized the potential role of the Arabidopsis thaliana AGAMOUS-LIKE6 (AGL6) gene by fusing full-length coding sequence with transcriptional activator and repressor domains and suggest a role for AGL6 in lateral organ development and flowering. Upon photoperiodic induction of flowering, AGL6 becomes expressed in abaxial and proximal regions of cauline leaf primordia, as well as the cryptic bracts subtending flowers. In developing flowers, AGL6 is detected in the proximal regions of all floral organs and in developing ovules. Converting AGL6 into a strong activator through fusion to the VP16 domain triggers bract outgrowth, implicating AGL6 in the development of bractless flowers in Arabidopsis. In addition, ectopic reproductive structures form on both bracts and flowers in gAGL6::VP16 transgenic plants, which is dependent on B and C class homeotic genes, but independent of LEAFY. Overexpression of both AGL6 and its transcriptional repressor form, AGL6::EAR, causes precocious flowering and terminal flower formation, suggesting that AGL6 suppresses the function of a floral repressor.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Flores/crescimento & desenvolvimento , Proteínas de Domínio MADS/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Microscopia Eletrônica de Varredura , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/ultraestrutura , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética
20.
J Cell Biol ; 168(5): 825-36, 2005 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-15728193

RESUMO

The ribbon complex of retinal photoreceptor synapses represents a specialization of the cytomatrix at the active zone (CAZ) present at conventional synapses. In mice deficient for the CAZ protein Bassoon, ribbons are not anchored to the presynaptic membrane but float freely in the cytoplasm. Exploiting this phenotype, we dissected the molecular structure of the photoreceptor ribbon complex. Identifiable CAZ proteins segregate into two compartments at the ribbon: a ribbon-associated compartment including Piccolo, RIBEYE, CtBP1/BARS, RIM1, and the motor protein KIF3A, and an active zone compartment including RIM2, Munc13-1, a Ca2+ channel alpha1 subunit, and ERC2/CAST1. A direct interaction between the ribbon-specific protein RIBEYE and Bassoon seems to link the two compartments and is responsible for the physical integrity of the photoreceptor ribbon complex. Finally, we found the RIBEYE homologue CtBP1 at ribbon and conventional synapses, suggesting a novel role for the CtBP/BARS family in the molecular assembly and function of central nervous system synapses.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosfoproteínas/metabolismo , Células Fotorreceptoras/metabolismo , Sinapses/metabolismo , Oxirredutases do Álcool , Animais , Proteínas Correpressoras , Imunofluorescência , Imuno-Histoquímica , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...