Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 28(14): 1883-1893, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28615322

RESUMO

We investigated the physical role of the extracellular matrix (ECM) in vascular homeostasis in the basal chordate Botryllus schlosseri, which has a large, transparent, extracorporeal vascular network encompassing an area >100 cm2 We found that the collagen cross-linking enzyme lysyl oxidase is expressed in all vascular cells and that in vivo inhibition using ß-aminopropionitrile (BAPN) caused a rapid, global regression of the entire network, with some vessels regressing >10 mm within 16 h. BAPN treatment changed the ultrastructure of collagen fibers in the vessel basement membrane, and the kinetics of regression were dose dependent. Pharmacological inhibition of both focal adhesion kinase (FAK) and Raf also induced regression, and levels of phosphorylated FAK in vascular cells decreased during BAPN treatment and FAK inhibition but not Raf inhibition, suggesting that physical changes in the vessel ECM are detected via canonical integrin signaling pathways. Regression is driven by apoptosis and extrusion of cells through the basal lamina, which are then engulfed by blood-borne phagocytes. Extrusion and regression occurred in a coordinated manner that maintained vessel integrity, with no loss of barrier function. This suggests the presence of regulatory mechanisms linking physical changes to a homeostatic, tissue-level response.


Assuntos
Colágeno/fisiologia , Matriz Extracelular/metabolismo , Aminopropionitrilo , Animais , Cordados , Colágeno/metabolismo , Colágeno/ultraestrutura , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Fosforilação , Proteína-Lisina 6-Oxidase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinases raf
2.
PLoS One ; 9(4): e95460, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24736432

RESUMO

The source of tissue turnover during homeostasis or following injury is usually due to proliferation of a small number of resident, lineage-restricted stem cells that have the ability to amplify and differentiate into mature cell types. We are studying vascular regeneration in a chordate model organism, Botryllus schlosseri, and have previously found that following surgical ablation of the extracorporeal vasculature, new tissue will regenerate in a VEGF-dependent process within 48 hrs. Here we use a novel vascular cell lineage tracing methodology to assess regeneration in parabiosed individuals and demonstrate that the source of regenerated vasculature is due to the proliferation of pre-existing vascular resident cells and not a mobile progenitor. We also show that these cells are bi-potential, and can reversibly adopt two fates, that of the newly forming vessels or the differentiated vascular tissue at the terminus of the vasculature, known as ampullae. In addition, we show that pre-existing vascular resident cells differentially express progenitor and differentiated cell markers including the Botryllus homologs of CD133, VEGFR-2, and Cadherin during the regenerative process.


Assuntos
Vasos Sanguíneos/citologia , Vasos Sanguíneos/fisiologia , Regeneração , Urocordados/citologia , Urocordados/fisiologia , Antígeno AC133 , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Diferenciação Celular , Linhagem da Célula , Movimento Celular , Proliferação de Células , Regulação da Expressão Gênica , Glicoproteínas/metabolismo , Concentração de Íons de Hidrogênio , Peptídeos/metabolismo , Processos Estocásticos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...