Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 110: 128-137, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27102448

RESUMO

The potential release of metal oxide engineered nanoparticles (ENP) into agricultural systems has created the need to evaluate the impact of these materials on crop yield and food safety. The study here grew sweet potato (Ipomoea batatas) to maturity in field microcosms using substrate amended with three concentrations (100, 500 or 1000 mg kg DW-1) of either nZnO, nCuO, or nCeO2 or equivalent amounts of Zn2+, Cu2+, or Ce4+. Adverse effects on tuber biomass were observed only for the highest concentration of Zn or Cu applied. Exposure to both forms of Ce had no adverse effect on yield and a slight positive benefit at higher concentrations on tuber diameter. The three metals accumulated in both the peel and flesh of the sweet potato tubers, with concentrations higher in the peel than the flesh for each element. For Zn, >70% of the metal was in the flesh and for Cu >50%. The peels retained 75-95% of Ce in the tubers. The projected dietary intake of each metal by seven age-mass classes from child to adult only exceeded the oral reference dose for chronic toxicity in a scenario where children consumed tubers grown at the highest metal concentration. The results throughout were generally not different between the ENP- and ionic-treatments, suggesting that the added ENPs underwent dissolution to release their component ions prior to accumulation. The results offer insight into the fate and impact of these ENPs in soils.


Assuntos
Cério/farmacologia , Cobre/farmacologia , Ipomoea batatas/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Zinco/farmacologia , Adolescente , Biomassa , Cério/química , Cério/metabolismo , Cério/toxicidade , Criança , Pré-Escolar , Cobre/química , Cobre/metabolismo , Cobre/toxicidade , Dieta , Relação Dose-Resposta a Droga , Feminino , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Humanos , Lactente , Íons , Ipomoea batatas/crescimento & desenvolvimento , Ipomoea batatas/metabolismo , Masculino , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Adulto Jovem , Zinco/metabolismo , Zinco/toxicidade , Óxido de Zinco/química , Óxido de Zinco/metabolismo
2.
Front Plant Sci ; 7: 188, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26941758

RESUMO

The expanding production and use of engineered nanomaterials (ENMs) have raised concerns about the potential risk of those materials to food safety and human health. In a prior study, the accumulation of Zn, Cu, and Ce from ZnO, CuO, or CeO2, respectively, was examined in carrot (Daucus carota L.) grown in sand culture in comparison to accumulation from exposure to equivalent concentrations of ionic Zn(2+), Cu(2+), or Ce(4+). The fresh weight concentration data for peeled and unpeeled carrots were used to project dietary intake of each metal by seven age-mass classes from child to adult based on consumption of a single serving of carrot. Dietary intake was compared to the oral reference dose (oral RfD) for chronic toxicity for Zn or Cu and estimated mean and median oral RfD values for Ce based on nine other rare earth elements. Reverse dietary intake calculations were also conducted to estimate the number of servings of carrot, the mass of carrot consumed, or the tissue concentration of Zn, Cu, or Ce that would cause the oral RfD to be exceeded upon consumption. The projections indicated for Zn and Cu, the oral RfD would be exceeded in only a few highly unrealistic scenarios of exceedingly high Zn or Cu concentrations in the substrate from ZnO or CuO or consumption of excessive amounts of unpeeled carrot. The implications associated with the presence of Ce in the carrot tissues depended upon whether the mean or median oral RfD value from the rare earth elements was used as a basis for comparison. The calculations further indicated that peeling carrots reduced the projected dietary intake by one to two orders of magnitude for both ENM- and ionic-treated carrots. Overall in terms of total metal concentration, the results suggested no specific impact of the ENM form on dietary intake. The effort here provided a conservative view of the potential dietary intake of these three metals that might result from consumption of carrots exposed to nanomaterials (NMs) and how peeling mitigated that dietary intake. The results also demonstrate the potential utility of dietary intake projections for examining potential risks of NM exposure from agricultural foods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...