Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 12: 931294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033446

RESUMO

The future of radiation oncology is exceptionally strong as we are increasingly involved in nearly all oncology disease sites due to extraordinary advances in radiation oncology treatment management platforms and improvements in treatment execution. Due to our technology and consistent accuracy, compressed radiation oncology treatment strategies are becoming more commonplace secondary to our ability to successfully treat tumor targets with increased normal tissue avoidance. In many disease sites including the central nervous system, pulmonary parenchyma, liver, and other areas, our service is redefining the standards of care. Targeting of disease has improved due to advances in tumor imaging and application of integrated imaging datasets into sophisticated planning systems which can optimize volume driven plans created by talented personnel. Treatment times have significantly decreased due to volume driven arc therapy and positioning is secured by real time imaging and optical tracking. Normal tissue exclusion has permitted compressed treatment schedules making treatment more convenient for the patient. These changes require additional study to further optimize care. Because data exchange worldwide have evolved through digital platforms and prisms, images and radiation datasets worldwide can be shared/reviewed on a same day basis using established de-identification and anonymization methods. Data storage post-trial completion can co-exist with digital pathomic and radiomic information in a single database coupled with patient specific outcome information and serve to move our translational science forward with nimble query elements and artificial intelligence to ask better questions of the data we collect and collate. This will be important moving forward to validate our process improvements at an enterprise level and support our science. We have to be thorough and complete in our data acquisition processes, however if we remain disciplined in our data management plan, our field can grow further and become more successful generating new standards of care from validated datasets.

2.
Int J Radiat Oncol Biol Phys ; 54(4): 1134-9, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12419440

RESUMO

PURPOSE: To determine the cause of epilation at the top of the head for 2 patients with acoustic neuromas after undergoing fractionated radiosurgery with the Leskell Gamma Knife model C. This epilation was unexpected, because the treatment planning program stated the dose at this location was <0.1 Gy. METHODS AND MATERIALS: The radiation dose along a central axis, parallel to the couch, from the helmet's focus to the helmet cap was measured during couch transit. RESULTS: Transit doses of 4.4 cGy/shot at 10 cm and 5.6 cGy/shot at distances >15 cm from the helmet's focus were measured. It was estimated that the 2 patients with epilation received approximately 6-7 Gy to the scalp. A shield was constructed and shown to reduce the transit dose by as much as 60%. CONCLUSION: The design of the helmet allows the uncollimated beams to reach areas of the patient, superior to the target, just before and after couch docking with the housing. For treatment involving a large number of shots (i.e., fractionation), off-target doses < or = 8 Gy can result. For these cases, the transit dose should be considered and some form of additional shielding should be used.


Assuntos
Folículo Piloso/efeitos da radiação , Radiocirurgia/efeitos adversos , Remoção de Cabelo , Humanos , Doses de Radiação , Proteção Radiológica , Couro Cabeludo/efeitos da radiação
3.
Med Phys ; 29(6): 1097-108, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12094979

RESUMO

X-ray mammography is currently the primary tool used for breast cancer detection. However, studies have shown that 5%-15% of breast cancers are not visualized mammographically. The long term goal of this project is to improve the x-ray mammographic imaging system using capillary optics. A post-patient capillary optic lens has the potential to increase spatial resolution and eliminate the detection of scattered x rays, thereby improving image contrast and the signal-to-noise ratio (SNR). Several individual and two prototype multitapered optics were studied to determine the feasibility of a full-field multitapered optic. Scatter fraction, contrast, transmission, uniformity, and the modulation transfer function (MTF) were measured for a Mo target tube/computed radiography (CR) imaging system when this prototype was applied. The results were compared with standard grid and airgap techniques. The multitapered optic lens removed 85% of the scattered photons as compared to 66% and 39% for the air gap and grid methods, respectively. This resulted in an improvement of contrast by approximately 80% for the optics, 51% for the air gap, and 30% for grid methods. The single optic lens improved the limiting resolution (5% MTF level) of the CR detector by 78% due to magnification with very little focal spot blurring, while the multitapered prototype improved resolution significantly, but not as much as the single optic. These measurements have shown that it is feasible to create a multitapered optic lens that significantly improves system MTF and virtually eliminates scatter. With continued improvements in fabrication techniques, a full-field multitapered lens will be feasible.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Mamografia/instrumentação , Mamografia/métodos , Algoritmos , Feminino , Humanos , Óptica e Fotônica , Espalhamento de Radiação , Software , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...