Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Oncol ; 31(5): 2453-2480, 2024 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-38785465

RESUMO

Countries face challenges in paying for new drugs. High prices are driven in part by exploding drug development costs, which, in turn, are driven by essential but excessive regulation. Burdensome regulation also delays drug development, and this can translate into thousands of life-years lost. We need system-wide reform that will enable less expensive, faster drug development. The speed with which COVID-19 vaccines and AIDS therapies were developed indicates this is possible if governments prioritize it. Countries also differ in how they value drugs, and generally, those willing to pay more have better, faster access. Canada is used as an example to illustrate how "incremental cost-effectiveness ratios" (ICERs) based on measures such as gains in "quality-adjusted life-years" (QALYs) may be used to determine a drug's value but are often problematic, imprecise assessments. Generally, ICER/QALY estimates inadequately consider the impact of patient crossover or long post-progression survival, therapy benefits in distinct subpopulations, positive impacts of the therapy on other healthcare or societal costs, how much governments willingly might pay for other things, etc. Furthermore, a QALY value should be higher for a lethal or uncommon disease than for a common, nonlethal disease. Compared to international comparators, Canada is particularly ineffective in initiating public funding for essential new medications. Addressing these disparities demands urgent reform.


Assuntos
Antineoplásicos , Análise Custo-Benefício , Humanos , Antineoplásicos/uso terapêutico , Antineoplásicos/economia , Análise Custo-Benefício/métodos , Canadá , Anos de Vida Ajustados por Qualidade de Vida , Custos de Medicamentos , COVID-19 , Neoplasias/tratamento farmacológico , Neoplasias/economia , SARS-CoV-2
2.
Curr Oncol ; 30(9): 8310-8327, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37754518

RESUMO

Historically, subject matter experts and healthcare professionals have played a pivotal role in driving oncology clinical trials. Although patients have been key participants, their deliberate and active contribution to the design and decision-making process has been limited. This scoping review aimed to examine the existing literature to scope the extent of active patient engagement in the design of oncology clinical trials and its corresponding influence on trial outcomes. We conducted a systematic search using two databases, namely MEDLINE (Ovid) and EMBASE, to identify relevant studies exploring patient engagement in cancer-related clinical research design. We identified seven studies that met the eligibility criteria. The studies highlighted the benefits of active patient involvement, such as improved recruitment strategies, and the attainment of more patient-centered trial outcomes. The influence of patient involvement varied from tangible developments like patient-friendly resources to indirect impacts like improved patient experiences and potentially higher adherence to trial intervention. The future of clinical trials should prioritize patients' values and perspectives, with regulatory bodies fostering these practices through clear guidelines. As the concept of patient centricity takes root in oncology research, the involvement of patients should evolve beyond mere participation.


Assuntos
Oncologia , Neoplasias , Humanos , Bases de Dados Factuais , Pessoal de Saúde , Neoplasias/terapia , Participação do Paciente , Ensaios Clínicos como Assunto
3.
Front Health Serv ; 3: 1015621, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926496

RESUMO

Introduction: Predictive oncology, germline technologies, and adaptive seamless trials are promising advances in the treatment of lethal cancers. Yet, access to these therapies is stymied by costly research, regulatory barriers, and structural inequalities worsened by the COVID-19 pandemic. Methods: To address the need for a comprehensive strategy for rapid and more equitable access to breakthrough therapies for lethal cancers, we conducted a modified multi-round Delphi study with 70 experts in oncology, clinical trials, legal and regulatory processes, patient advocacy, ethics, drug development, and health policy in Canada, Europe, and the US. Semi-structured ethnographic interviews (n = 33) were used to identify issues and solutions that participants subsequently evaluated in a survey (n = 47). Survey and interview data were co-analyzed to refine topics for an in-person roundtable where recommendations for system change were deliberated and drafted by 26 participants. Results: Participants emphasized major issues in patient access to novel therapeutics including burdens of time, cost, and transportation required to complete eligibility requirements or to participate in trials. Only 12% of respondents reported satisfaction with current research systems, with "patient access to trials" and "delays in study approval" the topmost concerns. Conclusion: Experts agree that an equity-centered precision oncology communication model should be developed to improve access to adaptive seamless trials, eligibility reforms, and just-in-time trial activation. International advocacy groups are a key mobilizer of patient trust and should be involved at every stage of research and therapy approval. Our results also show that governments can promote better and faster access to life-saving therapeutics by engaging researchers and payors in an ecosystem approach that responds to the unique clinical, structural, temporal, and risk-benefit situations that patients with life-threatening cancers confront.

4.
Curr Oncol ; 29(2): 1176-1189, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35200599

RESUMO

New drugs are expensive, in part due to excessive drug development costs. Governments are trying to reduce drug prices. This can delay access to effective agents. A country's access to new drugs correlates with prices they agree to pay. After Health Canada approves a drug, the Canadian Agency for Drug and Technologies in Health (CADTH) assesses it. CADTH's approval is usually contingent on it costing ≤CAD 50,000 per quality adjusted life year (QALY) gained. This value (unchanged from the 1970s) is inappropriately low. An inflation-adjusted CAD 50,000 1975 QALY should translate into a CAD 250,000 2021 QALY. CADTH's target also does not consider that drug development costs have risen much faster than inflation or that new precision therapies may only be used in small populations. In a separate process, proposals from the Patented Medicines Price Review Board (PMPRB) would decrease initial Canadian drug prices by 20%, but prices would fall further as sales increased, with ultimate price reductions of up to 80%. PMPRB claims its proposal would not reduce drug access, but multiple analyses strongly suggest otherwise. Government price controls target the symptom (high prices), not the disease. They translate into shortages without solving the problem. CADTH and PMPRB approaches both threaten access to effective drugs.


Assuntos
Custos de Medicamentos , Canadá , Custos e Análise de Custo , Humanos , Anos de Vida Ajustados por Qualidade de Vida
5.
Cancer Med ; 10(24): 9040-9046, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34766461

RESUMO

BACKGROUND: Systemic therapy prolongs overall survival (OS) in advanced non-small cell lung cancer (NSCLC), but diagnostic tests, staging and molecular profiling take time, and this can delay therapy initiation. OS approximates first-order kinetics. METHODS: We used OS of chemo-naive NSCLC patients on a placebo/best supportive care trial arm to estimate % of patients dying while awaiting therapy. We digitized survival curves from eight studies, calculated OS half-life, then estimated the proportion surviving after different times of interest (tn ) using the formula: X=exp-tn∗0.693/t1/2 , where EXP signifies exponential, * indicates multiplication, 0.693 is the natural log of 2, and t1/2 is the survival half-life in weeks. RESULTS: Across trials, the OS half-life for placebo/best supportive care in previously untreated NSCLC was 19.5 weeks. Hence, based on calculations using the formula above, if therapy were delayed by 1, 2, 3, or 4 weeks then 4%, 7%, 10%, and 13% of all patients, respectively, would die while awaiting treatment. Others would become too sick to consider therapy even if still alive. CONCLUSIONS: This quantifies why rapid baseline testing and prompt therapy initiation are important in advanced NSCLC. It also illustrates why screening procedures for clinical trial inclusion must be faster. Otherwise, it is potentially hazardous for a patient to be considered for a trial due to risk of death or deterioration while awaiting eligibility assessment. It is also important to not delay initiation of systemic therapy for procedures that add relatively little value, such as radiotherapy for small, asymptomatic brain metastases.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Neoplasias Pulmonares/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Intervalo Livre de Progressão
6.
Cancer Med ; 7(5): 1824-1836, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29601671

RESUMO

It takes on average 6-12 years to develop new anticancer drugs from discovery to approval. Effective new agents prolong survival. To demonstrate the importance of rapid drug approval, we calculated life-years potentially saved if selected agents were approved more rapidly. As illustrative examples, we used 27 trials documenting improvements in survival. We multiplied improvement in median survival by numbers of patients dying annually and multiplied this by number of years from drug discovery until approval. For every year by which time to drug approval could have been shortened, there would have been a median number of life-years potentially saved of 79,920 worldwide per drug. Median number of life-years lost between time of drug discovery and approval was 1,020,900 per example. If we were able to use available opportunities to decrease the time required to take a drug from discovery to approval to 5 years, the median number of life-years saved per example would have been 523,890 worldwide. Various publications have identified opportunities to speed drug development without sacrificing patient safety. While many investigational drugs prove to be ineffective, some significantly prolong survival and/or reduce suffering. These illustrative examples suggest that a substantial number of life-years could potentially be saved by increasing the efficiency of development of new drugs for advanced malignancies.


Assuntos
Antineoplásicos/uso terapêutico , Aprovação de Drogas , Neoplasias/tratamento farmacológico , Algoritmos , Ensaios Clínicos como Assunto , Desenvolvimento de Medicamentos , Humanos , Neoplasias/mortalidade , Análise de Sobrevida , Fatores de Tempo , Resultado do Tratamento
7.
Clin Cancer Res ; 21(20): 4561-8, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26473192

RESUMO

High costs of complying with drug development regulations slow progress and contribute to high drug prices and, hence, mounting health care costs. If it is exorbitantly expensive to bring new therapies to approval, fewer agents can be developed with available resources, impeding the emergence of urgently needed treatments and escalating prices by limiting competition. Excessive regulation produces numerous speed bumps on the road to drug authorization. Although an explosion of knowledge could fuel rapid advances, progress has been slowed worldwide by inefficient regulatory and clinical research systems that limit access to therapies that prolong life and relieve suffering. We must replace current compliance-centered regulation (appropriate for nonlethal diseases like acne) with "progress-centered regulation" in lethal diseases, where the overarching objective must be rapid, inexpensive development of effective new therapies. We need to (i) reduce expensive, time-consuming preclinical toxicology and pharmacology assessments, which add little value; (ii) revamp the clinical trial approval process to make it fast and efficient; (iii) permit immediate multiple-site trial activation when an eligible patient is identified ("just-in-time" activation); (iv) reduce the requirement for excessive, low-value documentation; (v) replace this excessive documentation with sensible postmarketing surveillance; (vi) develop pragmatic investigator accreditation; (vii) where it is to the benefit of the patient, permit investigators latitude in deviating from protocols, without requiring approved amendments; (viii) confirm the value of predictive biomarkers before requiring the high costs of IDE/CLIA compliance; and (ix) approve agents based on high phase I-II response rates in defined subpopulations, rather than mandating expensive, time-consuming phase III trials.


Assuntos
Antineoplásicos/economia , Antineoplásicos/uso terapêutico , Pesquisa Biomédica/economia , Neoplasias/tratamento farmacológico , Pesquisa Biomédica/métodos , Ensaios Clínicos como Assunto , Descoberta de Drogas/economia , Descoberta de Drogas/métodos , Necessidades e Demandas de Serviços de Saúde/economia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...