Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1415059, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952845

RESUMO

Introduction: Phenotypic complexity in species complexes and recently radiated lineages has resulted in a diversity of forms that have historically been classified into separate taxa. Increasingly, with the proliferation of high-throughput sequencing methods, additional layers of complexity have been recognized, such as frequent hybridization and reticulation, which may call into question the previous morphological groupings of closely related organisms. Methods: We investigated Northern European, Asian, and Beringian populations of Ranunculus auricomus agg. with phylogenomic analysis of 736 genes and 27,586 SNPs in order to deduce the interrelatedness and hybrid origin of this phenotypically and taxonomically complicated group from Europe characterized by a history of hybridization, polyploidy, apomixis, and recent radiation. The ploidy levels and the reproductive mode of the Northern European populations were assessed via flow cytometric seed screening. In addition, in order to examine the phenotypic plasticity of the dwarf forms previously described as species and summarized as the Ranunculus monophyllus group, we conducted climate chamber experiments under cold (northern) and warm (temperate) conditions. Results: The Northern European populations are tetra- to hexaploid and propagate primarily through apomixis. The complex is characterized by highly reticulate relationships. Genetic differentiation of the main clusters has occurred between the above-mentioned geographical regions. We find evidence for the hybrid origin of the taxa in these areas with differing genomic contributions from the geographically nearest European sexual progenitor species. Furthermore, polyphyly in the taxa of the R. monophyllus group is supported. Experiments show low lability in the traits associated with the R. monophyllus group. Discussion: We conclude that multiple adaptations of hybrids to colder climates and shorter vegetation periods have shaped the phenotypes of the R. monophyllus group, and we suggest a formal classification as nothotaxa within the R. auricomus group.

2.
Plants (Basel) ; 12(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37960021

RESUMO

The taxonomic status of many Southern European taxa of the Ranunculus auricomus complex remains uncertain despite this region's proximity to the native ranges of the sexual progenitor species of the complex. We investigated whether additional sexual progenitor species are present in the Mediterranean region. Utilizing target enrichment of 736 single-copy nuclear gene regions and flow cytometry, we analyzed phylogenomic relationships, the ploidy level, and the reproductive mode in representatives of 16 populations in Southern Europe, with additional sequence data from herbarium collections. Additionally, phased sequence assemblies from suspected nothotaxa were mapped to previously described sexual progenitor species in order to determine hybrid ancestry. We found the majority of Mediterranean taxa to be tetraploid, with hybrid populations propagating primarily via apomixis. Phylogenomic analysis revealed that except for the progenitor species, the Mediterranean taxa are often polyphyletic. Most apomictic taxa showed evidence of mixed heritage from progenitor species, with certain progenitor genotypes having mapped more to the populations from adjacent geographical regions. Geographical trends were found in phylogenetic distance, roughly following an east-to-west longitudinal demarcation of the complex, with apomicts extending to the southern margins. Additionally, we observed post-hybridization divergence between the western and eastern populations of nothotaxa in Southern Europe. Our results support a classification of apomictic populations as nothotaxa, as previously suggested for Central Europe.

3.
Biology (Basel) ; 12(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36979110

RESUMO

Plant species complexes represent a particularly interesting example of taxonomically complex groups (TCGs), linking hybridization, apomixis, and polyploidy with complex morphological patterns. In such TCGs, mosaic-like character combinations and conflicts of morphological data with molecular phylogenies present a major problem for species classification. Here, we used the large polyploid apomictic European Ranunculus auricomus complex to study relationships among five diploid sexual progenitor species and 75 polyploid apomictic derivate taxa, based on geometric morphometrics using 11,690 landmarked objects (basal and stem leaves, receptacles), genomic data (97,312 RAD-Seq loci, 48 phased target enrichment genes, 71 plastid regions) from 220 populations. We showed that (1) observed genomic clusters correspond to morphological groupings based on basal leaves and concatenated traits, and morphological groups were best resolved with RAD-Seq data; (2) described apomictic taxa usually overlap within trait morphospace except for those taxa at the space edges; (3) apomictic phenotypes are highly influenced by parental subgenome composition and to a lesser extent by climatic factors; and (4) allopolyploid apomictic taxa, compared to their sexual progenitor, resemble a mosaic of ecological and morphological intermediate to transgressive biotypes. The joint evaluation of phylogenomic, phenotypic, reproductive, and ecological data supports a revision of purely descriptive, subjective traditional morphological classifications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...