Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 286(25): 22372-83, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21531731

RESUMO

In bacteria, RuvABC is required for the resolution of Holliday junctions (HJ) made during homologous recombination. The RuvAB complex catalyzes HJ branch migration and replication fork reversal (RFR). During RFR, a stalled fork is reversed to form a HJ adjacent to a DNA double strand end, a reaction that requires RuvAB in certain Escherichia coli replication mutants. The exact structure of active RuvAB complexes remains elusive as it is still unknown whether one or two tetramers of RuvA support RuvB during branch migration and during RFR. We designed an E. coli RuvA mutant, RuvA2(KaP), specifically impaired for RuvA tetramer-tetramer interactions. As expected, the mutant protein is impaired for complex II (two tetramers) formation on HJs, although the binding efficiency of complex I (a single tetramer) is as wild type. We show that although RuvA complex II formation is required for efficient HJ branch migration in vitro, RuvA2(KaP) is fully active for homologous recombination in vivo. RuvA2(KaP) is also deficient at forming complex II on synthetic replication forks, and the binding affinity of RuvA2(KaP) for forks is decreased compared with wild type. Accordingly, RuvA2(KaP) is inefficient at processing forks in vitro and in vivo. These data indicate that RuvA2(KaP) is a separation-of-function mutant, capable of homologous recombination but impaired for RFR. RuvA2(KaP) is defective for stimulation of RuvB activity and stability of HJ·RuvA·RuvB tripartite complexes. This work demonstrates that the need for RuvA tetramer-tetramer interactions for full RuvAB activity in vitro causes specifically an RFR defect in vivo.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , Replicação do DNA , DNA Cruciforme/genética , DNA Cruciforme/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Movimento , Multimerização Proteica , Adenosina Trifosfatases/metabolismo , DNA Helicases/genética , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Mutagênese , Mutação , Estabilidade Proteica , Estrutura Quaternária de Proteína
2.
Biochem J ; 429(1): 113-25, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20412048

RESUMO

The two closely related eukaryotic AAA+ proteins (ATPases associated with various cellular activities), RuvBL1 (RuvB-like 1) and RuvBL2, are essential components of large multi-protein complexes involved in diverse cellular processes. Although the molecular mechanisms of RuvBL1 and RuvBL2 function remain unknown, oligomerization is likely to be important for their function together or individually, and different oligomeric forms might underpin different functions. Several experimental approaches were used to investigate the molecular architecture of the RuvBL1-RuvBL2 complex and the role of the ATPase-insert domain (domain II) for its assembly and stability. Analytical ultracentrifugation showed that RuvBL1 and RuvBL2 were mainly monomeric and each monomer co-existed with small proportions of dimers, trimers and hexamers. Adenine nucleotides induced hexamerization of RuvBL2, but not RuvBL1. In contrast, the RuvBL1-RuvBL2 complexes contained single- and double-hexamers together with smaller forms. The role of domain II in complex assembly was examined by size-exclusion chromatography using deletion mutants of RuvBL1 and RuvBL2. Significantly, catalytically competent dodecameric RuvBL1-RuvBL2, complexes lacking domain II in one or both proteins could be assembled but the loss of domain II in RuvBL1 destabilized the dodecamer. The composition of the RuvBL1-RuvBL2 complex was analysed by MS. Several species of mixed RuvBL1/2 hexamers with different stoichiometries were seen in the spectra of the RuvBL1-RuvBL2 complex. A number of our results indicate that the architecture of the human RuvBL1-RuvBL2 complex does not fit the recent structural model of the yeast Rvb1-Rvb2 complex.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Cristalografia por Raios X , Humanos , Ligação Proteica/fisiologia , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...