Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 19607, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950044

RESUMO

Detection of the physiological response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is challenging in the absence of overt clinical signs but remains necessary to understand a full subclinical disease spectrum. In this study, our objective was to use radiomics (from computed tomography images) and blood biomarkers to predict SARS-CoV-2 infection in a nonhuman primate model (NHP) with inapparent clinical disease. To accomplish this aim, we built machine-learning models to predict SARS-CoV-2 infection in a NHP model of subclinical disease using baseline-normalized radiomic and blood sample analyses data from SARS-CoV-2-exposed and control (mock-exposed) crab-eating macaques. We applied a novel adaptation of the minimum redundancy maximum relevance (mRMR) feature-selection technique, called mRMR-permute, for statistically-thresholded and unbiased feature selection. Through performance comparison of eight machine-learning models trained on 14 feature sets, we demonstrated that a logistic regression model trained on the mRMR-permute feature set can predict SARS-CoV-2 infection with very high accuracy. Eighty-nine percent of mRMR-permute selected features had strong and significant class effects. Through this work, we identified a key set of radiomic and blood biomarkers that can be used to predict infection status even in the absence of clinical signs. Furthermore, we proposed and demonstrated the utility of a novel feature-selection technique called mRMR-permute. This work lays the foundation for the prediction and classification of SARS-CoV-2 disease severity.


Assuntos
COVID-19 , Animais , COVID-19/diagnóstico por imagem , SARS-CoV-2 , Biomarcadores , Aprendizado de Máquina , Primatas
2.
J Med Imaging (Bellingham) ; 9(6): 066003, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36506838

RESUMO

Purpose: We propose a method to identify sensitive and reliable whole-lung radiomic features from computed tomography (CT) images in a nonhuman primate model of coronavirus disease 2019 (COVID-19). Criteria used for feature selection in this method may improve the performance and robustness of predictive models. Approach: Fourteen crab-eating macaques were assigned to two experimental groups and exposed to either severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or a mock inoculum. High-resolution CT scans were acquired before exposure and on several post-exposure days. Lung volumes were segmented using a deep-learning methodology, and radiomic features were extracted from the original image. The reliability of each feature was assessed by the intraclass correlation coefficient (ICC) using the mock-exposed group data. The sensitivity of each feature was assessed using the virus-exposed group data by defining a factor R that estimates the excess of variation above the maximum normal variation computed in the mock-exposed group. R and ICC were used to rank features and identify non-sensitive and unstable features. Results: Out of 111 radiomic features, 43% had excellent reliability ( ICC > 0.90 ), and 55% had either good ( ICC > 0.75 ) or moderate ( ICC > 0.50 ) reliability. Nineteen features were not sensitive to the radiological manifestations of SARS-CoV-2 exposure. The sensitivity of features showed patterns that suggested a correlation with the radiological manifestations. Conclusions: Features were quantified and ranked based on their sensitivity and reliability. Features to be excluded to create more robust models were identified. Applicability to similar viral pneumonia studies is also possible.

3.
Acad Radiol ; 28 Suppl 1: S37-S44, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32943333

RESUMO

With the advent of deep learning, convolutional neural networks (CNNs) have evolved as an effective method for the automated segmentation of different tissues in medical image analysis. In certain infectious diseases, the liver is one of the more highly affected organs, where an accurate liver segmentation method may play a significant role to improve the diagnosis, quantification, and follow-up. Although several segmentation algorithms have been proposed for liver or liver-tumor segmentation in computed tomography (CT) of human subjects, none of them have been investigated for nonhuman primates (NHPs), where the livers have a wide range in size and morphology. In addition, the unique characteristics of different infections or the heterogeneous immune responses of different NHPs to the infections appear with a diverse radiodensity distribution in the CT imaging. In this study, we investigated three state-of-the-art algorithms; VNet, UNet, and feature pyramid network (FPN) for automated liver segmentation in whole-body CT images of NHPs. The efficacy of the CNNs were evaluated on 82 scans of 37 animals, including pre and post-exposure to different viruses such as Ebola, Marburg, and Lassa. Using a 10-fold cross-validation, the best performance for the segmented liver was provided by the FPN; an average 94.77% Dice score, and 3.6% relative absolute volume difference. Our study demonstrated the efficacy of multiple CNNs, wherein the FPN outperforms VNet and UNet for liver segmentation in infectious disease imaging research.


Assuntos
Doenças Transmissíveis , Aprendizado Profundo , Animais , Processamento de Imagem Assistida por Computador , Fígado/diagnóstico por imagem , Primatas
4.
Int J Comput Assist Radiol Surg ; 15(10): 1631-1638, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32648161

RESUMO

PURPOSE: Certain viral infectious diseases cause systemic damage and the liver is an important organ affected directly by the virus and/or the hosts' response to the virus. Medical imaging indicates that the liver damage is heterogenous, and therefore, quantification of these changes requires analysis of the entire organ. Delineating the liver in preclinical imaging studies is a time-consuming and difficult task that would benefit from automated liver segmentation. METHODS: A nonhuman primate atlas-based liver segmentation method was developed to support quantitative image analysis of preclinical research. A set of 82 computed tomography (CT) scans of nonhuman primates with associated manual contours delineating the liver was generated from normal and abnormal livers. The proposed technique uses rigid and deformable registrations, a majority vote algorithm, and image post-processing operations to automate the liver segmentation process. This technique was evaluated using Dice similarity, Hausdorff distance measures, and Bland-Altman plots. RESULTS: Automated segmentation results compare favorably with manual contouring, achieving a median Dice score of 0.91. Limits of agreement from Bland-Altman plots indicate that liver changes of 3 Hounsfield units (CT) and 0.4 SUVmean (positron emission tomography) are detectable using our automated method of segmentation, which are substantially less than changes observed in the host response to these viral infectious diseases. CONCLUSION: The proposed atlas-based liver segmentation technique is generalizable to various sizes and species of nonhuman primates and facilitates preclinical infectious disease research studies. While the image analysis software used is commercially available and facilities with funding can access the software to perform similar nonhuman primate liver quantitative analyses, the approach can be implemented in open-source frameworks as there is nothing proprietary about these methods.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Hepatopatias/diagnóstico por imagem , Fígado/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Animais , Tomografia por Emissão de Pósitrons , Primatas , Pesquisa , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...