Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 4: e1919, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27114876

RESUMO

Rnf is a membrane protein complex that has been shown to be important in energy conservation. Here, Desulfovibrio alaskensis G20 and Rnf mutants of G20 were grown with different electron donor and acceptor combinations to determine the importance of Rnf in energy conservation and the type of ion gradient generated. The addition of the protonophore TCS strongly inhibited lactate-sulfate dependent growth whereas the sodium ionophore ETH2120 had no effect, indicating a role for the proton gradient during growth. Mutants in rnfA and rnfD were more sensitive to the protonophore at 5 µM than the parental strain, suggesting the importance of Rnf in the generation of a proton gradient. The electrical potential (ΔΨ), ΔpH and proton motive force were lower in the rnfA mutant than in the parental strain of D.alaskensis G20. These results provide evidence that the Rnf complex in D. alaskensis functions as a primary proton pump whose activity is important for growth.

2.
Appl Environ Microbiol ; 81(7): 2339-48, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25616787

RESUMO

In anaerobic environments, mutually beneficial metabolic interactions between microorganisms (syntrophy) are essential for oxidation of organic matter to carbon dioxide and methane. Syntrophic interactions typically involve a microorganism degrading an organic compound to primary fermentation by-products and sources of electrons (i.e., formate, hydrogen, or nanowires) and a partner producing methane or respiring the electrons via alternative electron accepting processes. Using a transposon gene mutant library of the sulfate-reducing Desulfovibrio alaskensis G20, we screened for mutants incapable of serving as the electron-accepting partner of the butyrate-oxidizing bacterium, Syntrophomonas wolfei. A total of 17 gene mutants of D. alaskensis were identified as incapable of serving as the electron-accepting partner. The genes identified predominantly fell into three categories: membrane surface assembly, flagellum-pilus synthesis, and energy metabolism. Among these genes required to serve as the electron-accepting partner, the glycosyltransferase, pilus assembly protein (tadC), and flagellar biosynthesis protein showed reduced biofilm formation, suggesting that each of these components is involved in cell-to-cell interactions. Energy metabolism genes encoded proteins primarily involved in H2 uptake and electron cycling, including a rhodanese-containing complex that is phylogenetically conserved among sulfate-reducing Deltaproteobacteria. Utilizing an mRNA sequencing approach, analysis of transcript abundance in wild-type axenic and cocultures confirmed that genes identified as important for serving as the electron-accepting partner were more highly expressed under syntrophic conditions. The results imply that sulfate-reducing microorganisms require flagellar and outer membrane components to effectively couple to their syntrophic partners; furthermore, H2 metabolism is essential for syntrophic growth of D. alaskensis G20.


Assuntos
Biofilmes/crescimento & desenvolvimento , Clostridiales/fisiologia , Desulfovibrio/fisiologia , Flagelos/fisiologia , Formiatos/metabolismo , Hidrogênio/metabolismo , Simbiose , Clostridiales/crescimento & desenvolvimento , Clostridiales/metabolismo , Elementos de DNA Transponíveis , Desulfovibrio/genética , Desulfovibrio/crescimento & desenvolvimento , Desulfovibrio/metabolismo , Metabolismo Energético , Genes Bacterianos , Interações Microbianas , Mutagênese Insercional , Compostos Orgânicos/metabolismo
3.
Horm Behav ; 52(3): 391-400, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17675020

RESUMO

Infant rats learn to prefer stimuli paired with pain, presumably due to the importance of learning to prefer the caregiver to receive protection and food. With maturity, a more 'adult-like' learning system emerges that includes the amygdala and avoidance/fear learning. The attachment and 'adult-like' systems appear to co-exist in older pups with maternal presence engaging the attachment system by lowering corticosterone (CORT). Specifically, odor-shock conditioning (11 odor-0.5 mA shock trials) in 12-day-old pups results in an odor aversion, although an odor preference is learned if the mother is present during conditioning. Here, we propose a mechanism to explain pups ability to 'switch' between the dual learning systems by exploring the effect of maternal presence on hypothalamic paraventricular nucleus (PVN) neural activity, norepinephrine (NE) levels and learning. Maternal presence attenuates both PVN neural activity and PVN NE levels during odor-shock conditioning. Intra-PVN NE receptor antagonist infusion blocked the odor aversion learning with maternal absence, while intra-PVN NE receptor agonist infusion permitted odor aversion learning with maternal presence. These data suggest maternal control over pup learning acts through attenuation of PVN NE to reduce the CORT required for pup odor aversion learning. Moreover, these data also represent pups' continued maternal dependence for nursing, while enabling aversion learning outside the nest to prepare for pups future independent living.


Assuntos
Nível de Alerta/fisiologia , Aprendizagem por Associação/fisiologia , Aprendizagem da Esquiva/fisiologia , Norepinefrina/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiologia , Análise de Variância , Animais , Animais Recém-Nascidos , Corticosterona/metabolismo , Período Crítico Psicológico , Feminino , Masculino , Comportamento Materno , Ratos , Ratos Long-Evans , Receptores Adrenérgicos/fisiologia , Olfato/fisiologia , Meio Social , Estatísticas não Paramétricas , Estresse Psicológico/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...