Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(22): 15743-15754, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38746847

RESUMO

It is established that the rates of solvent exchange at interfaces correlate with the rates of a number of mineral reactions, including growth, dissolution and ion sorption. To test if solvent exchange is limiting these rates, quasi-elastic neutron scattering (QENS) is used here to benchmark classical molecular dynamics (CMD) simulations of water bound to nanoparticulate calcite. Four distributions of solvent exchanges are found with residence times of 8.9 ps for water bound to calcium sites, 14 ps for that bound to carbonate sites and 16.7 and 85.1 ps for two bound waters in a shared calcium-carbonate conformation. By comparing rates and activation energies, it is found that solvent exchange limits reaction rates neither for growth nor dissolution, likely due to the necessity to form intermediate states during ion sorption. However, solvent exchange forms the ceiling for reaction rates and yields insight into more complex reaction pathways.

2.
Inorg Chem ; 59(6): 3783-3793, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32129071

RESUMO

A series of tunnel structured V-substituted silver hollandite (Ag1.2VxMn8-xO16, x = 0-1.4) samples is prepared and characterized through a combination of synchrotron X-ray diffraction (XRD), synchrotron X-ray absorption spectroscopy (XAS), laboratory Raman spectroscopy, and electron microscopy measurements. The oxidation states of the individual transition metals are characterized using V and Mn K-edge XAS data indicating the vanadium centers exist as V5+, and the Mn oxidation state decreases with increased V substitution to balance the charge. Scanning transmission electron microscopy of reduced materials shows reduction-displacement of silver metal at high levels of lithiation. In lithium batteries, the V-substituted tunneled manganese oxide materials reveal previously unseen reversible nonaqueous Ag electrochemistry and exhibit up to 2.5× higher Li storage capacity relative to their unsubstituted counterparts. The highest capacity was observed for the Ag1.2(V0.8Mn7.2)O16·0.8H2O material with an intermediate level of V substitution, likely due to a combination of the atomic composition, the morphology of the particle, and the homogeneous distribution of the active material within the electrode structure where factors over multiple length scales contribute to the electrochemistry.

3.
Acc Chem Res ; 51(3): 575-582, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29457710

RESUMO

Future advances in energy storage systems rely on identification of appropriate target materials and deliberate synthesis of the target materials with control of their physiochemical properties in order to disentangle the contributions of distinct properties to the functional electrochemistry. This goal demands systematic inquiry using model materials that provide the opportunity for significant synthetic versatility and control. Ideally, a material family that enables direct manipulation of characteristics including composition, defects, and crystallite size while remaining within the defined structural framework would be necessary. Accomplishing this through direct synthetic methods is desirable to minimize the complicating effects of secondary processing. The structural motif most frequently used for insertion type electrodes is based on layered type structures where ion diffusion in two dimensions can be envisioned. However, lattice expansion and contraction associated with the ion movement and electron transfer as a result of repeated charge and discharge cycling can result in structural degradation and amorphization with accompanying loss of capacity. In contrast, tunnel type structures embody a more rigid framework where the inherent structural design can accommodate the presence of cations and often multiple cations. Of specific interest are manganese oxides as they can exhibit a tunneled structure, termed α-MnO2, and are an important class of nanomaterial in the fields of catalysis, adsorption-separation, and ion-exchange. The α-MnO2 structure has one-dimensional 2 × 2 tunnels formed by corner and edge sharing manganese octahedral [MnO6] units and can be readily substituted in the central tunnel by a variety of cations of varying size. Importantly, α-MnO2 materials possess a rich chemistry with significant synthetic versatility allowing deliberate synthetic control of structure, composition, crystallite size, and defect content. This Account considers the investigation of α-MnO2 tunnel type structures and their electrochemistry. Examination of the reported findings on this material family demonstrates that multiple physiochemical properties influence the electrochemistry. The retention of the parent structure during charge and discharge cycling, the material composition including the identity and content of the central cation, the surface condition including oxygen vacancies, and crystallite size have all been demonstrated to impact electrochemical function. The selection of the α-MnO2 family of materials as a model system and the ability to control the variables associated with the structural family affirm that full investigation of the mechanisms related to active materials in an electrochemical system demands concerted efforts in synthetic material property control and multimodal characterization, combined with theory and modeling. This then enables more complete understanding of the factors that must be controlled to achieve consistent and desirable outcomes.

4.
ACS Appl Mater Interfaces ; 10(1): 400-407, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29227624

RESUMO

α-MnO2-structured materials are generally classified as semiconductors; thus, we present a strategy to increase electrochemical utilization through the design of a conductive material interface. Surface treatment of silver hollandite (AgxMn8O16) with Ag+ (Ag2O) provides significant benefits to the resultant electrochemistry, including a decreased charge-transfer resistance and a 2-fold increase in deliverable energy density at a high rate. The improved function of this designed interface relative to conventional electrode fabrication strategies is highlighted.

5.
Phys Chem Chem Phys ; 19(33): 22329-22343, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28805218

RESUMO

The structure of pristine AgFeO2 and phase makeup of Ag0.2FeO1.6 (a one-pot composite comprised of nanocrystalline stoichiometric AgFeO2 and amorphous γ-Fe2O3 phases) was investigated using synchrotron X-ray diffraction. A new stacking-fault model was proposed for AgFeO2 powder synthesized using the co-precipitation method. The lithiation/de-lithiation mechanisms of silver ferrite, AgFeO2 and Ag0.2FeO1.6 were investigated using ex situ, in situ, and operando characterization techniques. An amorphous γ-Fe2O3 component in the Ag0.2FeO1.6 sample is quantified. Operando XRD of electrochemically reduced AgFeO2 and Ag0.2FeO1.6 composites demonstrated differences in the structural evolution of the nanocrystalline AgFeO2 component. As complimentary techniques to XRD, ex situ X-ray Absorption Spectroscopy (XAS) provided insight into the short-range structure of the (de)lithiated nanocrystalline electrodes, and a novel in situ high energy X-ray fluorescence nanoprobe (HXN) mapping measurement was applied to spatially resolve the progression of discharge. Based on the results, a redox mechanism is proposed where the full reduction of Ag+ to Ag0 and partial reduction of Fe3+ to Fe2+ occur on reduction to 1.0 V, resulting in a Li1+yFeIIIFeIIyO2 phase. The Li1+yFeIIIFeIIyO2 phase can then reversibly cycle between Fe3+ and Fe2+ oxidation states, permitting good capacity retention over 50 cycles. In the Ag0.2FeO1.6 composite, a substantial amorphous γ-Fe2O3 component is observed which discharges to rock salt LiFe2O3 and Fe0 metal phase in the 3.5-1.0 V voltage range (in parallel with the AgFeO2 mechanism), and reversibly reoxidizes to a nanocrystalline iron oxide phase.

6.
Chem Commun (Camb) ; 53(26): 3665-3668, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28294244

RESUMO

MgMn2O4 nanoparticles with crystallite sizes of 11 (MMO-1) and 31 nm (MMO-2) were synthesized and their magnesium-ion battery-relevant electrochemistry was investigated. MMO-1 delivered an initial capacity of 220 mA h g-1 (678 mW h g-1). Electrolyte water content had a profound effect on cycle retention.

7.
Phys Chem Chem Phys ; 18(25): 16930-40, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27292604

RESUMO

Copper ferrite, CuFe2O4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe2O4. A phase pure tetragonal CuFe2O4 material was prepared and characterized using laboratory and synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. Ex situ X-ray absorption spectroscopy (XAS) measurements were used to study the battery redox processes at the Fe and Cu K-edges, using X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and transmission X-ray microscopy (TXM) spectroscopies. EXAFS analysis showed upon discharge, an initial conversion of 50% of the copper(ii) to copper metal positioned outside of the spinel structure, followed by a migration of tetrahedral iron(iii) cations to octahedral positions previously occupied by copper(ii). Upon charging to 3.5 V, the copper metal remained in the metallic state, while iron metal oxidation to iron(iii) was achieved. The results provide new mechanistic insight regarding the evolution of the local coordination environments at the iron and copper centers upon discharging and charging.

8.
ACS Nano ; 9(8): 8430-9, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26181235

RESUMO

Hollandites (OMS-2) are an intriguing class of sorbents, catalysts, and energy storage materials with a tunnel structure permitting one-dimensional insertion and deinsertion of ions and small molecules along the c direction. A 7-fold increase in delivered capacity for Li/AgxMn8O16 electrochemical cells (160 versus 23 mAh/g) observed upon a seemingly small change in silver content (x ∼1.1 (L-Ag-OMS-2) and 1.6 (H-Ag-OMS-2)) led us to characterize the structure and defects of the silver hollandite material. Herein, Ag hollandite nanorods are studied through the combined use of local (atomic imaging, electron diffraction, electron energy-loss spectroscopy) and bulk (synchrotron based X-ray diffraction, thermogravimetric analysis) techniques. Selected area diffraction and high resolution transmission electron microscopy show a structure consistent with that refined by XRD; however, the Ag occupancy varies significantly even within neighboring channels. Both local and bulk measurements indicate a greater quantity of oxygen vacancies in L-Ag-OMS-2, resulting in lower average Mn valence relative to H-Ag-OMS-2. Electron energy loss spectroscopy shows a lower Mn oxidation state on the surface relative to the interior of the nanorods, where the average Mn valence is approximately Mn(3.7+) for H-Ag-OMS-2 and Mn(3.5+) for L-Ag-OMS-2 nanorods, respectively. The higher delivered capacity of L-Ag-OMS-2 may be related to more oxygen vacancies compared to H-Ag-OMS-2. Thus, the oxygen vacancies and MnO6 octahedra distortion are assumed to open the MnO6 octahedra walls, facilitating Li diffusion in the ab plane. These results indicate crystallite size and surface defects are significant factors affecting battery performance.

9.
Phys Chem Chem Phys ; 17(17): 11204-10, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25827353

RESUMO

Previously, we reported that electrodes containing silver vanadium phosphate (Ag2VO2PO4) powder exhibit a 15,000 fold increase in conductivity after discharge, concurrent with the formation of silver metal. In this study, in order to disentangle the complex nature of electrodes composed of electroactive powders, an electrochemical reduction of individual particles of Ag2VO2PO4 was conducted, to more directly probe the intrinsic materials properties of Ag2VO2PO4. Specifically, individual particle conductivity data from a nanoprobe system combined with SEM and optical imaging results revealed that the depth of discharge within an Ag2VO2PO4 particle is closely linked to the conductivity increase. Notably, the formation of silver metal may affect both inter- and intraparticle conductivity of the Ag2VO2PO4 material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...