Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 897: 148055, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043834

RESUMO

Brain derived neurotrophic factor (BDNF) is a major neurotransmitter that controls growth and maintenance of neurons and its misregulation is linked to neurodegeneration and human diseases. Estradiol (E2) is well-known to regulate the process of differentiation and plasticity of hippocampal neurons. Here we examined the mechanisms of BDNF gene regulation under basal conditions and under stimuli such as E2. Our results demonstrated that BDNF expression is induced by E2 in vitro in HT22 cells (hippocampal neuronal cells) and in vivo (in ovariectomized mouse brain under E2-treatment). Using chromatin immunoprecipitation assay, we demonstrated that estrogen receptors (ERα, ERß) were enriched at the BDNF promoter in presence of E2. Additionally, ER-coregulators (e.g., CBP/p300, MLL3), histone acetylation, H3K4-trimethylation, and RNA polymerase II levels were also elevated at the BDNF promoter in an E2-dependent manner. Additionally, under the basal conditions (in the absence of E2), the long noncoding RNA HOTAIR and its interacting partners PRC2 and LSD1 complexes binds to the promoter of BDNF and represses its expression. HOTAIR knockdown -relieves the repression resulting in elevation of BDNF expression. Further, levels of HOTAIR-interacting partners, EZH2 and LSD1 were reduced at the BDNF promoter upon HOTAIR-knockdown revealing that HOTAIR plays a regulatory role in BDNF gene expression by modulating promoter histone modifications. Additionally, we showed that E2 induced-BDNF expression is mediated by the displacement of silencing factors, EZH2 and LSD1 at BDNF promoter and subsequent recruitment of active transcription machinery. These results reveal the mechanisms of BDNF gene regulation under the basal condition and in presence of a positive regulator such as E2 in neuronal cells.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Estradiol , RNA Longo não Codificante , Animais , Humanos , Camundongos , Fator Neurotrófico Derivado do Encéfalo/genética , Linhagem Celular Tumoral , Estradiol/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases/genética , RNA Longo não Codificante/metabolismo
2.
Pharmacol Biochem Behav ; 232: 173653, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37804867

RESUMO

Women rapidly progress from recreational cocaine use to dependence, consume greater quantities of cocaine, experience more positive subjective effects of cocaine and have higher incidences of relapse during abstinence. These effects have been replicated in animal models of cocaine addiction and indicate an enhanced sensitivity and therefore, vulnerability of females to cocaine addiction. Furthermore, it has been demonstrated that estradiol (E2) is a key mediator of the aforementioned effects of cocaine in women and female animals. However, studies identifying the influence of E2 on cocaine-associated reward and its underlying neurobiological mechanisms are lacking. Here, we further explored the influence of E2 on cocaine conditioned place preference in female rats. We show that E2 mediates cocaine-conditioned reward by potentiating cocaine-context associations. In addition, the E2-mediated increases in cocaine-induced CPP are associated with increased activation of ERK1/2 and mTOR proteins in the nucleus accumbens, dorsal striatum, and ventral tegmental area. To assess the involvement of ERK1/2 and mTOR in E2-mediated enhanced cocaine-CPP, we inhibited ERK1/2 and/or mTOR activity during cocaine-conditioning and before CPP-test. Inhibition of ERK1/2 during conditioning blocked cocaine-CPP in females, inhibition mTOR was without effect, and inhibiting ERK1/2 and mTOR before CPP-test blocked cocaine-CPP. In conclusion, we have established that E2 enhances cocaine-conditioned reward by potentiating cocaine-context associations formed during conditioning. Additionally, activation of ERK1/2 during cocaine-conditioning is necessary for the potentiation of cocaine-conditioned reward by E2. SIGNIFICANCE STATEMENT: Studies characterizing the molecular substrates underlying the effects of E2 during the formation of cocaine-context associations are virtually unknown. In this study, we established the influence of E2 during the formation of cocaine-CPP and characterized the role of ERK1/2 and mTOR activity on this effect within significant nodes of the reward pathway. The elucidation of the role of E2 in cocaine-induced intracellular signaling fills a significant gap in our knowledge regarding the mechanisms by which E2 affects intracellular signaling pathways to indicate the motivational salience of a stimulus. These data are crucial to our understanding of how fluctuating hormone levels can render females increasing sensitive to the rewarding effects of cocaine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...