Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 50(3): 1376-83, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26730457

RESUMO

High-spatial-resolution, near-surface vertical profiling of atmospheric chemical composition is currently limited by the availability of experimental platforms that can sample in constrained environments. As a result, measurements of near-surface gradients in trace gas and aerosol particle concentrations have been limited to studies conducted from fixed location towers or tethered balloons. Here, we explore the utility of a quadrotor unmanned aircraft system (UAS) as a sampling platform to measure vertical and horizontal concentration gradients of trace gases and aerosol particles at high spatial resolution (1 m) within the mixed layer (0-100 m). A 3D Robotics Iris+ autonomous quadrotor UAS was outfitted with a sensor package consisting of a two-channel aerosol optical particle counter and a CO2 sensor. The UAS demonstrated high precision in both vertical (±0.5 m) and horizontal positions (±1 m), highlighting the potential utility of quadrotor UAS drones for aerosol- and trace-gas measurements within complex terrain, such as the urban environment, forest canopies, and above difficult-to-access areas such as breaking surf. Vertical profiles of aerosol particle number concentrations, acquired from flights conducted along the California coastline, were used to constrain sea-spray aerosol-emission rates from coastal wave breaking.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/química , Aeronaves , Tamanho da Partícula , California
2.
Environ Sci Technol ; 49(3): 1569-77, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25493342

RESUMO

Primary organic aerosol (POA) emitted from light duty gasoline vehicles (LDGVs) exhibits a semivolatile behavior in which heating the aerosol and/or diluting the aerosol leads to partial evaporation of the POA. A single volatility distribution can explain the median evaporation behavior of POA emitted from LDGVs but this approach is unable to capture the full range of measured POA volatility during thermodenuder (TD) experiments conducted at atmospherically relevant concentrations (2-5 µg m(-3)). Reanalysis of published TD data combined with analysis of new measurements suggest that POA emitted from gasoline vehicles is composed of two types of POA that have distinctly different volatility distributions: one low-volatility distribution and one medium-volatility distribution. These correspond to fuel combustion-derived POA and motor oil POA, respectively. Models that simultaneously incorporate both of these distributions are able to reproduce experimental results much better (R(2) = 0.94) than models that use a single average or median distribution (R(2) = 0.52). These results indicate that some fraction of POA emitted from LDGVs is essentially nonvolatile under typical atmospheric dilution levels. Roughly 50% of the vehicles tested in the current study had POA emissions dominated by fuel combustion products (essentially nonvolatile). Further testing is required to determine appropriate fleet-average emissions rates of the two POA types from LDGVs.


Assuntos
Aerossóis/química , Emissões de Veículos/análise , Aerossóis/análise , Automóveis , Gasolina/análise , Modelos Teóricos , Volatilização
3.
Environ Sci Technol ; 48(19): 11405-12, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25198906

RESUMO

Exposure to gas-phase isocyanic acid (HNCO) has been previously shown to be associated with the development of atherosclerosis, cataracts and rheumatoid arthritis. As such, accurate emission inventories for HNCO are critical for modeling the spatial and temporal distribution of HNCO on a regional and global scale. To date, HNCO emission rates from light duty gasoline vehicles, operated under driving conditions, have not been determined. Here, we present the first measurements of real-time emission factors of isocyanic acid from a fleet of eight light duty gasoline-powered vehicles (LDGVs) tested on a chassis dynamometer using the Unified Driving Cycle (UC) at the California Air Resources Board (CARB) Haagen-Smit test facility, all of which were equipped with three-way catalytic converters. HNCO emissions were observed from all vehicles, in contrast to the idealized laboratory measurements. We report the tested fleet averaged HNCO emission factors, which depend strongly on the phase of the drive cycle; ranging from 0.46 ± 0.13 mg kg fuel(-1) during engine start to 1.70 ± 1.77 mg kg fuel(-1) during hard acceleration after the engine and catalytic converter were warm. The tested eight-car fleet average fuel based HNCO emission factor was 0.91 ± 0.58 mg kg fuel(-1), within the range previously estimated for light duty diesel-powered vehicles (0.21-3.96 mg kg fuel(-1)). Our results suggest that HNCO emissions from LDGVs represent a significant emission source in urban areas that should be accounted for in global and regional models.


Assuntos
Poluentes Atmosféricos/análise , Cianatos/análise , Veículos Automotores , Emissões de Veículos/análise , Gasolina
4.
Drug Metab Dispos ; 30(7): 838-44, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12065443

RESUMO

Multiple drug resistance (mdr) genes encode P-glycoprotein, which is responsible for resistance to some cancer chemotherapeutic drugs and efflux of xenobiotics of cells. Thus, mdr can protect organs from xenobiotics. In rats, there are two mdr1 genes capable of xenobiotic transport, mdr1a and mdr1b. The purpose of this study was to determine the tissue distribution of rat mdr1a and mdr1b mRNA and whether microsomal enzyme inducers that increase phase I and II drug-metabolizing enzymes coordinately regulate mdr1a and/or mdr1b. The mRNA levels of mdr1a and mdr1b were determined using branched-DNA signal amplification technology. The highest level of expression of mdr1a mRNA was observed in the gastrointestinal tract, with levels increasing, respectively, from duodenum, jejunum, and ileum to large intestine. Expression levels of mdr1a mRNA in the cerebral cortex, cerebellum, kidney, lung, and liver were less than one-tenth of that in the ileum. The tissue distribution of mdr1b mRNA was similar to mdr1a with highest expression in the gastrointestinal tract but only about 3-fold higher than in most other tissues. The induction of mdr1a and mdr1b mRNA transcripts in liver, kidney, and ileum by treatment of rats with 18 chemicals representing aryl hydrocarbon receptor ligands, constitutive androstane receptor ligands, pregnane X receptor ligands, peroxisome proliferator-activated receptor ligands, electrophile-response-element activators, and CYP4502E1 inducers was assessed. Hepatic, renal, and intestinal expression of mdr1a and mdr1b mRNA were not significantly altered by treatment of rats with any of these classes of ligands. In conclusion, the primary expression of rat mdr1 genes is in the gastrointestinal tract where they are thought to function to decrease the absorption of some xenobiotics. Rat mdr1 gene expression is not readily increased by microsomal enzyme inducers in rats through coordinate mechanisms with phase I and II drug-metabolizing enzymes.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/biossíntese , Resistência a Múltiplos Medicamentos/fisiologia , Compostos Orgânicos/farmacocinética , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Masculino , Compostos Orgânicos/farmacologia , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...