Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Hum Gene Ther ; 33(3-4): 175-187, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34931542

RESUMO

Recombinant adeno-associated viruses (AAVs) have emerged as promising vectors for human gene therapy, but some variants have induced severe toxicity in Rhesus monkeys and piglets following high-dose intravenous (IV) administration. To characterize biodistribution, transduction, and toxicity among common preclinical species, an AAV9 neurotropic variant expressing the survival motor neuron 1 (SMN1) transgene (AAV-PHP.B-CBh-SMN1) was administered by IV bolus injection to Wistar Han rats and cynomolgus monkeys at doses of 2 × 1013, 5 × 1013, or 1 × 1014 vg/kg. A dose-dependent degeneration/necrosis of neurons without clinical manifestations occurred in dorsal root ganglia (DRGs) and sympathetic thoracic ganglia in rats, while liver injury was not observed in rats. In monkeys, one male at 5 × 1013 vg/kg was found dead on day 4. Clinical pathology data on days 3 and/or 4 at all doses suggested liver dysfunction and coagulation disorders, which led to study termination. Histologic evaluation of the liver in monkeys showed hepatocyte degeneration and necrosis without inflammatory cell infiltrates or intravascular thrombi, suggesting that hepatocyte injury is a direct effect of the vector following hepatocyte transduction. In situ hybridization demonstrated a dose-dependent expression of SMN1 transgene mRNA in the cytoplasm and DNA in the nucleus of periportal to panlobular hepatocytes, while quantitative polymerase chain reaction confirmed the dose-dependent presence of SMN1 transgene mRNA and DNA in monkeys. Monkeys produced a much greater amount of transgene mRNA compared with rats. In DRGs, neuronal degeneration/necrosis and accompanying findings were observed in monkeys as early as 4 days after test article administration. The present results show sensory neuron toxicity following IV delivery of AAV vectors at high doses with an early onset in Macaca fascicularis and after 1 month in rats, and suggest adding the autonomic system in the watch list for preclinical and clinical studies. Our data also suggest that the rat may be useful for evaluating the potential DRG toxicity of AAV vectors, while acute hepatic toxicity associated with coagulation disorders appears to be highly species-dependent.


Assuntos
Dependovirus , Vetores Genéticos , Animais , Dependovirus/genética , Vetores Genéticos/genética , Macaca fascicularis , Masculino , Neurônios Motores , Necrose , RNA Mensageiro , Ratos , Ratos Wistar , Suínos , Distribuição Tecidual , Transdução Genética
2.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34493582

RESUMO

Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs). Recently approved vaccines provide needed interventions, albeit at prices that may limit their global access. Subunit vaccines based on recombinant proteins are suited for large-volume microbial manufacturing to yield billions of doses annually, minimizing their manufacturing cost. These types of vaccines are well-established, proven interventions with multiple safe and efficacious commercial examples. Many vaccine candidates of this type for SARS-CoV-2 rely on sequences containing the receptor-binding domain (RBD), which mediates viral entry to cells via ACE2. Here we report an engineered sequence variant of RBD that exhibits high-yield manufacturability, high-affinity binding to ACE2, and enhanced immunogenicity after a single dose in mice compared to the Wuhan-Hu-1 variant used in current vaccines. Antibodies raised against the engineered protein exhibited heterotypic binding to the RBD from two recently reported SARS-CoV-2 variants of concern (501Y.V1/V2). Presentation of the engineered RBD on a designed virus-like particle (VLP) also reduced weight loss in hamsters upon viral challenge.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Engenharia de Proteínas/métodos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Animais , Anticorpos Antivirais/imunologia , Antígenos Virais , Sítios de Ligação , COVID-19/virologia , Vacinas contra COVID-19/economia , Humanos , Imunogenicidade da Vacina , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Saccharomycetales/metabolismo , Vacinas de Subunidades Antigênicas
3.
Microb Cell Fact ; 20(1): 94, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933073

RESUMO

BACKGROUND: Vaccines comprising recombinant subunit proteins are well-suited to low-cost and high-volume production for global use. The design of manufacturing processes to produce subunit vaccines depends, however, on the inherent biophysical traits presented by an individual antigen of interest. New candidate antigens typically require developing custom processes for each one and may require unique steps to ensure sufficient yields without product-related variants. RESULTS: We describe a holistic approach for the molecular design of recombinant protein antigens-considering both their manufacturability and antigenicity-informed by bioinformatic analyses such as RNA-seq, ribosome profiling, and sequence-based prediction tools. We demonstrate this approach by engineering the product sequences of a trivalent non-replicating rotavirus vaccine (NRRV) candidate to improve titers and mitigate product variants caused by N-terminal truncation, hypermannosylation, and aggregation. The three engineered NRRV antigens retained their original antigenicity and immunogenicity, while their improved manufacturability enabled concomitant production and purification of all three serotypes in a single, end-to-end perfusion-based process using the biotechnical yeast Komagataella phaffii. CONCLUSIONS: This study demonstrates that molecular engineering of subunit antigens using advanced genomic methods can facilitate their manufacturing in continuous production. Such capabilities have potential to lower the cost and volumetric requirements in manufacturing vaccines based on recombinant protein subunits.


Assuntos
Antígenos Virais/genética , Engenharia Genética/métodos , Vacinas contra Rotavirus/genética , Rotavirus/imunologia , Saccharomycetales/genética , Antígenos Virais/imunologia , Biologia Computacional , Genômica/métodos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Rotavirus/genética , Vacinas contra Rotavirus/imunologia , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia
5.
bioRxiv ; 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33688647

RESUMO

Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs).1 Recently approved vaccines provide needed interventions, albeit at prices that may limit their global access.2 Subunit vaccines based on recombinant proteins are suited for large-volume microbial manufacturing to yield billions of doses annually, minimizing their manufacturing costs.3 These types of vaccines are well-established, proven interventions with multiple safe and efficacious commercial examples.4-6 Many vaccine candidates of this type for SARS-CoV-2 rely on sequences containing the receptor-binding domain (RBD), which mediates viral entry to cells via ACE2.7,8 Here we report an engineered sequence variant of RBD that exhibits high-yield manufacturability, high-affinity binding to ACE2, and enhanced immunogenicity after a single dose in mice compared to the Wuhan-Hu-1 variant used in current vaccines. Antibodies raised against the engineered protein exhibited heterotypic binding to the RBD from two recently reported SARS-CoV-2 variants of concern (501Y.V1/V2). Presentation of the engineered RBD on a designed virus-like particle (VLP) also reduced weight loss in hamsters upon viral challenge.

6.
J Toxicol Sci ; 46(2): 57-68, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33536390

RESUMO

The number of gene therapies in development continues to increase, as they represent a novel method to treat, and potentially cure, many diseases. Gene therapies can be conducted with an in vivo or ex vivo approach, to cause gene augmentation, gene suppression, or genomic editing. Adeno-associated viruses are commonly used to deliver gene therapies, but their use is associated with several manufacturing, nonclinical and clinical challenges. As these challenges emerge, regulatory agency expectations continue to evolve. Following administration of rAAV-based gene therapies, nonclinical toxicities may occur, which includes immunogenicity, hepatotoxicity, neurotoxicity, and the potential risks for insertional mutagenesis and subsequent tumorgenicity. The mechanism for these findings and translation into the clinical setting are unclear at this time but have influenced the nonclinical studies that regulatory agencies are increasingly requesting to support clinical trials and marketing authorizations. These evolving regulatory expectations and toxicities, as well as future nonclinical considerations, are discussed herein.


Assuntos
Dependovirus , Técnicas de Transferência de Genes , Terapia Genética/métodos , Terapia Genética/tendências , Vetores Genéticos , Carcinogênese , Terapia Genética/efeitos adversos , Vetores Genéticos/toxicidade , Humanos , Mutagênese
7.
Biotechnol Bioeng ; 118(5): 1832-1839, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33527350

RESUMO

Development of continuous biopharmaceutical manufacturing processes is an area of active research. This study considers the long-term transgene copy number stability of Pichia pastoris in continuous bioreactors. We propose a model of copy number loss that quantifies population heterogeneity. An analytical solution is derived and compared with existing experimental data. The model is then used to provide guidance for stable operating timescales. The model is extended to consider copy number dependent growth such as in the case of Zeocin supplementation. The model is also extended to analyze a continuous seeding strategy. This study is a critical step towards understanding the impact of continuous processing on the stability of Pichia pastoris and the resultant products.


Assuntos
Reatores Biológicos/microbiologia , Variações do Número de Cópias de DNA/genética , Instabilidade Genômica/genética , Proteínas Recombinantes , Saccharomycetales , DNA Fúngico/genética , Modelos Genéticos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo
8.
J Pharm Sci ; 110(3): 1054-1066, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33278412

RESUMO

In a companion paper, a two-step developability assessment is presented to rapidly evaluate low-cost formulations (multi-dose, aluminum-adjuvanted) for new subunit vaccine candidates. As a case study, a non-replicating rotavirus (NRRV) recombinant protein antigen P[4] was found to be destabilized by the vaccine preservative thimerosal, and this effect was mitigated by modification of the free cysteine (C173S). In this work, the mechanism(s) of thimerosal-P[4] protein interactions, along with subsequent effects on the P[4] protein's structural integrity, are determined. Reversible complexation of ethylmercury, a thimerosal degradation byproduct, with the single cysteine residue of P[4] protein is demonstrated by intact protein mass analysis and biophysical studies. A working mechanism involving a reversible S-Hg coordinate bond is presented based on the literature. This reaction increased the local backbone flexibility of P[4] within the helical region surrounding the cysteine residue and then caused more global destabilization, both as detected by HX-MS. These effects correlate with changes in antibody-P[4] binding parameters and alterations in P[4] conformational stability due to C173S modification. Epitope mapping by HX-MS demonstrated involvement of the same cysteine-containing helical region of P[4] in antibody-antigen binding. Future formulation challenges to develop low-cost, multi-dose formulations for new recombinant protein vaccine candidates are discussed.


Assuntos
Rotavirus , Timerosal , Antígenos Virais , Conservantes Farmacêuticos , Vacinas de Subunidades Antigênicas
9.
J Pharm Sci ; 110(3): 1042-1053, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33285182

RESUMO

A two-step developability assessment workflow is described to screen variants of recombinant protein antigens under various formulation conditions to rapidly identify stable, aluminum-adjuvanted, multi-dose vaccine candidates. For proof-of-concept, a series of sequence variants of the recombinant non-replicating rotavirus (NRRV) P[8] protein antigen (produced in Komagataella phaffii) were compared in terms of primary structure, post-translational modifications, antibody binding, conformational stability, relative solubility and preservative compatibility. Based on these results, promising P[8] variants were down-selected and the impact of key formulation conditions on storage stability was examined (e.g., presence or absence of the aluminum-adjuvant Alhydrogel and the preservative thimerosal) as measured by differential scanning calorimetry (DSC) and antibody binding assays. Good correlations between rapidly-generated developability screening data and storage stability profiles (12 weeks at various temperatures) were observed for aluminum-adsorbed P[8] antigens. These findings were extended and confirmed using variants of a second NRRV antigen, P[4]. These case-study results with P[8] and P[4] NRRV variants are discussed in terms of using this vaccine formulation developability workflow to better inform and optimize formulation design with a wide variety of recombinant protein antigens, with the long-term goal of rapidly and cost-efficiently identifying low-cost vaccine formulations for use in low and middle income countries.


Assuntos
Vacinas contra Rotavirus , Rotavirus , Antígenos , Proteínas Recombinantes , Saccharomycetales
10.
Sci Rep ; 10(1): 21264, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277514

RESUMO

Aberdeen Angus calves were sacrificed from immediately post-birth up to 96 days of age (DOA) and ileal samples were collected for microbial, histological and immunological analyses. Firmicutes bacteria were established immediately in the ileum of calves after birth and remained the dominant phyla at all time points from birth until 96 DOA. Temporal shifts in phyla reflected significantly increased Bacteroidetes at birth followed by temporal increases in Actinobacteria abundance over time. At a cellular level, a significant increase in cell density was detected in the ileal villi over time. The innate cell compartment at birth was composed primarily of eosinophils and macrophages with a low proportion of adaptive T lymphocytes; whereas an increase in the relative abundance of T cells (including those in the intra-epithelial layer) was observed over time. The ileal intestinal cells were immunologically competent as assessed by expression levels of genes encoding the inflammasome sensor NLRP3, and inflammatory cytokines IL1A, IL1B and IL33-all of which significantly increased from birth. In contrast, a temporal reduction in genes encoding anti-inflammatory cytokine IL10 was detected from birth. This study provides an integrated baseline of microbiological, histological and immunological data on the immune adaptation of the neonatal ileum to microbial colonisation in calves.


Assuntos
Íleo/microbiologia , Animais , Animais Recém-Nascidos , Bacteroidetes/genética , Bacteroidetes/fisiologia , Bovinos , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Interleucina-33/genética , Interleucina-33/metabolismo , Microbiota/genética , Microbiota/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
11.
ACS Synth Biol ; 9(9): 2515-2524, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32786350

RESUMO

Constructing efficient cellular factories often requires integration of heterologous pathways for synthesis of novel compounds and improved cellular productivity. Few genomic sites are routinely used, however, for efficient integration and expression of heterologous genes, especially in nonmodel hosts. Here, a data-guided framework for informing suitable integration sites for heterologous genes based on ATAC-seq was developed in the nonmodel yeast Komagataella phaffii. Single-copy GFP constructs were integrated using CRISPR/Cas9 into 38 intergenic regions (IGRs) to evaluate the effects of IGR size, intensity of ATAC-seq peaks, and orientation and expression of adjacent genes. Only the intensity of accessibility peaks was observed to have a significant effect, with higher expression observed from IGRs with low- to moderate-intensity peaks than from high-intensity peaks. This effect diminished for tandem, multicopy integrations, suggesting that the additional copies of exogenous sequence buffered the transcriptional unit of the transgene against effects from endogenous sequence context. The approach developed from these results should provide a basis for nominating suitable IGRs in other eukaryotic hosts from an annotated genome and ATAC-seq data.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação/métodos , DNA Intergênico/genética , Sistemas CRISPR-Cas/genética , Edição de Genes , Fator Estimulador de Colônias de Granulócitos/genética , Fator Estimulador de Colônias de Granulócitos/metabolismo , Hormônio do Crescimento Humano/genética , Hormônio do Crescimento Humano/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo
12.
Ther Innov Regul Sci ; 54(2): 462-467, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32072587

RESUMO

The EU is a member of the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH), and therefore adopts the ICH Guidelines, including the ICH M3 Guideline on Nonclinical Safety Studies. Following the 2016 incident in France with BIA 10-2474, and in light of the substantial evolvement of how early clinical development has been undertaken during the last 10 years, for example, conducting integrated (FIH) studies that include multiple parts (eg, single ascending doses, multiple ascending doses, food effect), EMA decided to update the existing 2007 FIH guideline. The key revisions to the 2007 guideline, now titled "Guideline on Strategies to Identify and Mitigate Risks for First-in-Human and Early Clinical Trials With Investigational Medicinal Products," include additional information. The revision reinforces the importance and impact of pharmacologic data, which supports the intended efficacy of the compound, risk assessment, and protocol design. The updates, effective February 2018, are intended to provide additional guidance and clarity for Sponsors developing FIH and early phase clinical research programs, and ultimately support subject safety. At the 2018 DIA Europe Annual Meeting in Basel, Switzerland, European regulators, industry representatives and academics convened a DIAlogue Session on April 17 to discuss how the revised 2017 guideline is being applied, and to establish recommendations for its application. Using two case studies as examples, the session participants discussed the nonclinical and clinical considerations for applying the newly revised recommendations, and interacted with a panel including regulators and industry representatives. The proceedings from this session reflect practical considerations for the implementation of the revised guideline.


Assuntos
Preparações Farmacêuticas , Europa (Continente) , Humanos , Suíça
13.
ACS Synth Biol ; 9(1): 26-35, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31825599

RESUMO

There is growing interest in the use of nonmodel microorganisms as hosts for biopharmaceutical manufacturing. These hosts require genomic engineering to meet clinically relevant product qualities and titers, but the adaptation of tools for editing genomes, such as CRISPR-Cas9, has been slow for poorly characterized hosts. Specifically, a lack of biochemical characterization of RNA polymerase III transcription has hindered reliable expression of guide RNAs in new hosts. Here, we present a sequencing-based strategy for the design of host-specific cassettes for modular, reliable, expression of guide RNAs. Using this strategy, we achieved up to 95% gene editing efficiency in the methylotrophic yeast Komagataella phaffii. We applied this approach for the rapid, multiplexed engineering of a complex phenotype, achieving humanized product glycosylation in two sequential steps of engineering. Reliable extension of simple gene editing tools to nonmodel manufacturing hosts will enable rapid engineering of manufacturing strains tuned for specific product profiles and potentially decrease the costs and timelines for process development.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Genoma Fúngico , RNA Guia de Cinetoplastídeos/genética , Saccharomycetales/genética , Regiões 3' não Traduzidas , Sequência de Bases , Produtos Biológicos , Proteínas Fúngicas/genética , Técnicas de Inativação de Genes , Glicerol Quinase/genética , Glicosilação , Fenótipo , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , RNA Polimerase III/genética , Transcriptoma
14.
Biotechnol Bioeng ; 117(2): 543-555, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31654411

RESUMO

Komagataella phaffii, also known as Pichia pastoris, is a common host for the production of biologics and enzymes, due to fast growth, high productivity, and advancements in host engineering. Several K. phaffii variants are commonly used as interchangeable base strains, which confounds efforts to improve this host. In this study, genomic and transcriptomic analyses of Y-11430 (CBS7435), GS115, X-33, and eight other variants enabled a comparative assessment of the relative fitness of these hosts for recombinant protein expression. Cell wall integrity explained the majority of the variation among strains, impacting transformation efficiency, growth, methanol metabolism, and secretion of heterologous proteins. Y-11430 exhibited the highest activity of genes involved in methanol utilization, up to two-fold higher transcription of heterologous genes, and robust growth. With a more permeable cell wall, X-33 displayed a six-fold higher transformation efficiency and up to 1.2-fold higher titers than Y-11430. X-33 also shared nearly all mutations, and a defective variant of HIS4, with GS115, precluding robust growth. Transferring two beneficial mutations identified in X-33 into Y-11430 resulted in an optimized base strain that provided up to four-fold higher transformation efficiency and three-fold higher protein titers, while retaining robust growth. The approach employed here to assess unique banked variants in a species and then transfer key beneficial variants into a base strain should also facilitate rational assessment of a broad set of other recombinant hosts.


Assuntos
Proteínas Fúngicas/genética , Genoma Fúngico/genética , Pichia/genética , Proteínas Recombinantes/genética , Transcriptoma/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Genômica , Pichia/metabolismo , RNA Fúngico/análise , RNA Fúngico/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Análise de Sequência de RNA
15.
Nat Commun ; 9(1): 4112, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30291241

RESUMO

Increased copy number alterations (CNAs) indicative of chromosomal instability (CIN) have been associated with poor cancer outcome. Here, we study CNAs as potential biomarkers of bevacizumab (BVZ) response in metastatic colorectal cancer (mCRC). We cluster 409 mCRCs in three subclusters characterized by different degrees of CIN. Tumors belonging to intermediate-to-high instability clusters have improved outcome following chemotherapy plus BVZ versus chemotherapy alone. In contrast, low instability tumors, which amongst others consist of POLE-mutated and microsatellite-instable tumors, derive no further benefit from BVZ. This is confirmed in 81 mCRC tumors from the phase 2 MoMa study involving BVZ. CNA clusters overlap with CRC consensus molecular subtypes (CMS); CMS2/4 xenografts correspond to intermediate-to-high instability clusters and respond to FOLFOX chemotherapy plus mouse avastin (B20), while CMS1/3 xenografts match with low instability clusters and fail to respond. Overall, we identify copy number load as a novel potential predictive biomarker of BVZ combination therapy.


Assuntos
Adenocarcinoma/genética , Antineoplásicos Imunológicos/uso terapêutico , Bevacizumab/uso terapêutico , Neoplasias Colorretais/genética , Variações do Número de Cópias de DNA , Adenocarcinoma/tratamento farmacológico , Idoso , Animais , Instabilidade Cromossômica , Neoplasias Colorretais/tratamento farmacológico , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Estudos Retrospectivos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Nat Biotechnol ; 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30272677

RESUMO

Conventional manufacturing of protein biopharmaceuticals in centralized, large-scale, single-product facilities is not well-suited to the agile production of drugs for small patient populations or individuals. Previous solutions for small-scale manufacturing are limited in both process reproducibility and product quality, owing to their complicated means of protein expression and purification. We describe an automated, benchtop, multiproduct manufacturing system, called Integrated Scalable Cyto-Technology (InSCyT), for the end-to-end production of hundreds to thousands of doses of clinical-quality protein biologics in about 3 d. Unlike previous systems, InSCyT includes fully integrated modules for sustained production, efficient purification without the use of affinity tags, and formulation to a final dosage form of recombinant biopharmaceuticals. We demonstrate that InSCyT can accelerate process development from sequence to purified drug in 12 weeks. We used integrated design to produce human growth hormone, interferon α-2b and granulocyte colony-stimulating factor with highly similar processes on this system and show that their purity and potency are comparable to those of marketed reference products.

17.
Vet Immunol Immunopathol ; 168(3-4): 249-57, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26553300

RESUMO

Mycobacterium bovis causes 3.1% of human tuberculosis cases, as described by the World Health Organisation. In cattle, this organism causes bovine tuberculosis (BTB) which can have a prevalence of up to 39.5% in some developing countries. In developed countries, although the prevalence of BTB has been reduced through eradication programmes, complete eradication has in some cases proved elusive, with prevalences in cattle of 0.5% in the Republic of Ireland and of 4.3% in the UK. As the tuberculous granuloma is the fundamental lesion that reflects the pathogenesis, immune control and progression of BTB, we aimed to develop an in vitro model of the early-stage bovine tuberculous granuloma, in order to model the early stages of BTB, while also reducing the use of experimentally infected animals. In vitro models of human and ovine mycobacterial granulomas have previously been developed; however, so far, there is no model for the BTB granuloma. As the disease in cattle differs in a number of ways from that in other species, we consider this to be a significant gap in the tools available to study the pathogenesis of BTB. By combining bovine monocyte-derived macrophages infected with M. bovis-BCG and autologous lymphocytes we have developed an early-stage tuberculous bovine granuloma model. In the model, 3D cell aggregations formed a spherical-shape that grew for up to 11 days post-infection. This bovine tuberculous granuloma model can aid in the study of such lesion development, and in comparative studies of pathogenesis, such as, for example, the question of mycobacterial latency in bovine tuberculosis.


Assuntos
Granuloma/veterinária , Macrófagos/microbiologia , Mycobacterium bovis , Tuberculose Bovina/patologia , Animais , Bovinos , Células Cultivadas , Granuloma/etiologia , Granuloma/patologia , Macrófagos/metabolismo , Masculino
18.
Toxicol Pathol ; 43(7): 995-1003, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26059827

RESUMO

Three orally administered metabotropic glutamate receptor 5 (mGluR5) negative allosteric modulators caused skin lesions consistent with delayed type-IV hypersensitivity in cynomolgus macaques in 2- and 12-week toxicity studies. Several monkeys developed macroscopic skin lesions in multiple locations after 8 to 9 days of dosing; the most prominent effects involved the genital region of males and generalized erythema occurred in both sexes. Microscopic lesions occurred in both clinically affected and unaffected areas and were characterized by lymphocytic interface inflammation, subepidermal bullae, and individual keratinocyte vacuolation/necrosis. In the 12-week study, clinical effects in 2 animals resolved with continued dosing, whereas in others the inflammatory process progressed with 1 female exhibiting systemic lymphocytic inflammation in multiple tissues. The inflammatory infiltrate consisted of CD3 and CD4 positive T lymphocytes with minimal CD68 positive macrophages and only rare CD8 positive T lymphocytes. A subset of animals given a dosing holiday was subsequently rechallenged with similar lesions developing but with a more rapid clinical onset. These skin lesions were consistent with type-IV delayed hypersensitivity with some features comparable to bullous drug eruptions in humans. A relationship between these findings and the intended mode of action for these compounds could not be ruled out, given the occurrence across different chemotypes.


Assuntos
Antiparkinsonianos/toxicidade , Toxidermias/etiologia , Toxidermias/patologia , Compostos Heterocíclicos com 3 Anéis/toxicidade , Compostos Heterocíclicos de 4 ou mais Anéis/toxicidade , Piridinas/toxicidade , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Animais , Feminino , Imuno-Histoquímica , Macaca fascicularis , Masculino
19.
PLoS One ; 9(8): e104393, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25099152

RESUMO

The present report describes an animal model for examining the effects of radiation on a range of neurocognitive functions in rodents that are similar to a number of basic human cognitive functions. Fourteen male Long-Evans rats were trained to perform an automated intra-dimensional set shifting task that consisted of their learning a basic discrimination between two stimulus shapes followed by more complex discrimination stages (e.g., a discrimination reversal, a compound discrimination, a compound reversal, a new shape discrimination, and an intra-dimensional stimulus discrimination reversal). One group of rats was exposed to head-only X-ray radiation (2.3 Gy at a dose rate of 1.9 Gy/min), while a second group received a sham-radiation exposure using the same anesthesia protocol. The irradiated group responded less, had elevated numbers of omitted trials, increased errors, and greater response latencies compared to the sham-irradiated control group. Additionally, social odor recognition memory was tested after radiation exposure by assessing the degree to which rats explored wooden beads impregnated with either their own odors or with the odors of novel, unfamiliar rats; however, no significant effects of radiation on social odor recognition memory were observed. These data suggest that rodent tasks assessing higher-level human cognitive domains are useful in examining the effects of radiation on the CNS, and may be applicable in approximating CNS risks from radiation exposure in clinical populations receiving whole brain irradiation.


Assuntos
Comportamento Animal/efeitos da radiação , Aprendizagem/efeitos da radiação , Memória/efeitos da radiação , Comportamento Social , Percepção Visual/efeitos da radiação , Raios X/efeitos adversos , Animais , Humanos , Masculino , Ratos , Ratos Long-Evans
20.
J Med Chem ; 56(23): 9771-9, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24219752

RESUMO

A set of molecules that advanced into exploratory animal toxicology studies (two species) was examined to determine what properties contributed to success in these safety studies. Compounds were rigorously evaluated across numerous safety end points and classified as "pass" if a suitable in vivo therapeutic index (TI) was achieved for advancement into regulatory toxicology studies. The most predictive end point contributing to compound survival was a predicted human efficacious concentration (Ceff) of ≤250 nM (total drug) and ≤40 nM (free drug). This trend held across a wide range of CNS modes of action, encompassing targets such as enzymes, G-protein-coupled receptors, ion channels, and transporters.


Assuntos
Descoberta de Drogas/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Animais , Fármacos do Sistema Nervoso Central/efeitos adversos , Cães , Humanos , Lipídeos/química , Macaca fascicularis , Nível de Efeito Adverso não Observado , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...