Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21258484

RESUMO

Acute respiratory distress syndrome (ARDS) is a life-threatening syndrome of respiratory failure and diffuse alveolar damage that results from dysregulated local and systemic immune activation, causing pulmonary vascular, parenchymal and alveolar damage. SARS-CoV-2 infection has become the dominant cause of ARDS worldwide, and emerging evidence implicates neutrophils and their cytotoxic arsenal of effector functions as central drivers of immune-mediated lung injury in COVID-19 ARDS. However, a key outstanding question is whether COVID-19 drives a unique program of neutrophil activation or effector functions that contributes to the severe pathogenesis of this pandemic illness, and whether this unique neutrophil response can be targeted to attenuate disease. Using a combination of high-dimensional single cell analysis and ex vivo functional assays of neutrophils from patients with COVID-19 ARDS compared to non-COVID ARDS (caused by bacterial pneumonia), we identified a functionally distinct landscape of neutrophil activation in COVID-19 ARDS that was intrinsically programmed during SARS-CoV-2 infection. Furthermore, neutrophils in COVID-19 ARDS were functionally primed to produce high amounts of neutrophil extracellular traps (NETs). Surprisingly, this unique pathological program of neutrophil priming escaped conventional therapy with dexamethasone, thereby revealing a promising target for adjunctive immunotherapy in severe COVID-19.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-440366

RESUMO

SARS-CoV-2 is a novel coronavirus that causes acute respiratory distress syndrome (ARDS), death and long-term sequelae. Innate immune cells are critical for host defense but are also the primary drivers of ARDS. The relationships between innate cellular responses in ARDS resulting from COVID-19 compared to other causes of ARDS, such as bacterial sepsis is unclear. Moreover, the beneficial effects of dexamethasone therapy during severe COVID-19 remain speculative, but understanding the mechanistic effects could improve evidence-based therapeutic interventions. To interrogate these relationships, we developed an scRNA-Seq and plasma proteomics atlas (biernaskielab.ca/COVID_neutrophil). We discovered that compared to bacterial ARDS, COVID-19 was associated with distinct neutrophil polarization characterized by either interferon (IFN) or prostaglandin (PG) active states. Neutrophils from bacterial ARDS had higher expression of antibacterial molecules such as PLAC8 and CD83. Dexamethasone therapy in COVID patients rapidly altered the IFNactive state, downregulated interferon responsive genes, and activated IL1R2+ve neutrophils. Dexamethasone also induced the emergence of immature neutrophils expressing immunosuppressive molecules ARG1 and ANXA1, which were not present in healthy controls. Moreover, dexamethasone remodeled global cellular interactions by changing neutrophils from information receivers into information providers. Importantly, male patients had higher proportions of IFNactive neutrophils, a greater degree of steroid-induced immature neutrophil expansion, and increased mortality benefit compared to females in the dexamethasone era. Indeed, the highest proportion of IFNactive neutrophils was associated with mortality. These results define neutrophil states unique to COVID-19 when contextualized to other life-threatening infections, thereby enhancing the relevance of our findings at the bedside. Furthermore, the molecular benefits of dexamethasone therapy are also defined, and the identified pathways and plasma proteins can now be targeted to develop improved therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA