Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Metabolism ; 141: 155399, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36642114

RESUMO

BACKGROUND: Production rates of the short-chain fatty acids (SCFA) acetate, propionate, and butyrate, which are beneficial metabolites of the intestinal microbiota, are difficult to measure in humans due to inaccessibility of the intestine to perform measurements, and the high first-pass metabolism of SCFAs in colonocytes and liver. We developed a stable tracer pulse approach to estimate SCFA whole-body production (WBP) in the accessible pool representing the systemic circulation and interstitial fluid. Compartmental modeling of plasma enrichment data allowed us to additionally calculate SCFA kinetics and pool sizes in the inaccessible pool likely representing the intestine with microbiota. We also studied the effects of aging and the presence of Chronic Obstructive Pulmonary Disease (COPD) on SCFA kinetics. METHODS: In this observational study, we designed a two-compartmental model to determine SCFA kinetics in 31 young (20-29 y) and 71 older (55-87 y) adults, as well as in 33 clinically stable patients with moderate to very severe COPD (mean (SD) FEV1, 46.5 (16.2)% of predicted). Participants received in the fasted state a pulse containing stable tracers of acetate, propionate, and butyrate intravenously and blood was sampled four times over a 30 min period. We measured tracer-tracee ratios by GC-MS and used parameters obtained from two-exponential curve fitting to calculate non-compartmental SCFA WBP and perform compartmental analysis. Statistics were done by ANCOVA. RESULTS: Acetate, propionate, and butyrate WBP and fluxes between the accessible and inaccessible pools were lower in older than young adults (all q < 0.0001). Moreover, older participants had lower acetate (q < 0.0001) and propionate (q = 0.019) production rates in the inaccessible pool as well as smaller sizes of the accessible and inaccessible acetate pools (both q < 0.0001) than young participants. WBP, compartmental SCFA kinetics, and pool sizes did not differ between COPD patients and older adults (all q > 0.05). Overall and independent of the group studied, calculated production rates in the inaccessible pool were on average 7 (acetate), 11 (propionate), and 16 (butyrate) times higher than non-compartmental WBP, and sizes of inaccessible pools were 24 (acetate), 31 (propionate), and 55 (butyrate) times higher than sizes of accessible pools (all p < 0.0001). CONCLUSION: Non-compartmental production measurements of SCFAs in the accessible pool (i.e. systemic circulation) substantially underestimate the SCFA production in the inaccessible pool, which likely represents the intestine with microbiota, as assessed by compartmental analysis.


Assuntos
Ácidos Graxos Voláteis , Propionatos , Adulto Jovem , Humanos , Idoso , Acetatos/metabolismo , Butiratos , Envelhecimento
2.
PLoS One ; 17(8): e0269401, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35972941

RESUMO

With the recent advances in the field of alternate agriculture, there has been an ever-growing demand for aquaponics as a potential substitute for traditional agricultural techniques for improving sustainable food production. However, the lack of data-driven methods and approaches for aquaponic cultivation remains a challenge. The objective of this research is to investigate statistical methods to make inferences using small datasets for nutrient control in aquaponics to optimize yield. In this work, we employed the Density-Based Synthetic Minority Over-sampling TEchnique (DB-SMOTE) to address dataset imbalance, and ExtraTreesClassifer and Recursive Feature Elimination (RFE) to choose the relevant features. Synthetic data generation techniques such as the Monte-Carlo (MC) sampling techniques were used to generate enough data points and different feature engineering techniques were used on the predictors before evaluating the performance of kernel-based classifiers with the goal of controlling nutrients in the aquaponic solution for optimal growth.[27-35].


Assuntos
Aprendizado de Máquina , Nutrientes , Agricultura
3.
Sensors (Basel) ; 22(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35591199

RESUMO

Nutrient regulation in aquaponic environments has been a topic of research for many years. Most studies have focused on appropriate control of nutrients in an aquaponic set-up, but very little research has been conducted on commercial-scale applications. In our model, the input data were sourced on a weekly basis from three commercial aquaponic farms in Southeast Texas over the course of a year. Due to the limited number of data points, dimensionality reduction techniques such as pairwise correlation matrix were used to remove the highly correlated predictors. Feature selection techniques such as the XGBoost classifier and Recursive Feature Elimination with ExtraTreesClassifier were used to rank the features in order of their relative importance. Ammonium and calcium were found to be the top two nutrient predictors, and based on the months in which lettuce was cultivated, the median of these nutrient values from the historical dataset served as the optimal concentration to be maintained in the aquaponic solution to sustain healthy growth of tilapia fish and lettuce plants in a coupled set-up. To accomplish this, Vernier sensors were used to measure the nutrient values and actuator systems were built to dispense the appropriate nutrient into the ecosystem via a closed loop.


Assuntos
Ecossistema , Nutrientes , Animais , Peixes , Lactuca , Aprendizado de Máquina
4.
J Infect Dis ; 226(5): 766-777, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35267024

RESUMO

BACKGROUND: Excessive complement activation has been implicated in the pathogenesis of coronavirus disease 2019 (COVID-19), but the mechanisms leading to this response remain unclear. METHODS: We measured plasma levels of key complement markers, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and antibodies against SARS-CoV-2 and seasonal human common cold coronaviruses (CCCs) in hospitalized patients with COVID-19 of moderate (n = 18) and critical severity (n = 37) and in healthy controls (n = 10). RESULTS: We confirmed that complement activation is systemically increased in patients with COVID-19 and is associated with a worse disease outcome. We showed that plasma levels of C1q and circulating immune complexes were markedly increased in patients with severe COVID-19 and correlated with higher immunoglobulin (Ig) G titers, greater complement activation, and higher disease severity score. Additional analyses showed that the classical pathway was the main arm responsible for augmented complement activation in severe patients. In addition, we demonstrated that a rapid IgG response to SARS-CoV-2 and an anamnestic IgG response to the nucleoprotein of the CCCs were strongly correlated with circulating immune complex levels, complement activation, and disease severity. CONCLUSIONS: These findings indicate that early, nonneutralizing IgG responses may play a key role in complement overactivation in severe COVID-19. Our work underscores the urgent need to develop therapeutic strategies to modify complement overactivation in patients with COVID-19.


Assuntos
COVID-19 , Anticorpos Antivirais , Proteínas do Nucleocapsídeo de Coronavírus , Humanos , Imunoglobulina G , SARS-CoV-2
5.
Math Biosci Eng ; 18(6): 7685-7710, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34814270

RESUMO

Mathematical models are widely recognized as an important tool for analyzing and understanding the dynamics of infectious disease outbreaks, predict their future trends, and evaluate public health intervention measures for disease control and elimination. We propose a novel stochastic metapopulation state-space model for COVID-19 transmission, which is based on a discrete-time spatio-temporal susceptible, exposed, infected, recovered, and deceased (SEIRD) model. The proposed framework allows the hidden SEIRD states and unknown transmission parameters to be estimated from noisy, incomplete time series of reported epidemiological data, by application of unscented Kalman filtering (UKF), maximum-likelihood adaptive filtering, and metaheuristic optimization. Experiments using both synthetic data and real data from the Fall 2020 COVID-19 wave in the state of Texas demonstrate the effectiveness of the proposed model.


Assuntos
COVID-19 , Humanos , Modelos Teóricos , SARS-CoV-2
6.
IEEE/ACM Trans Comput Biol Bioinform ; 17(4): 1105-1114, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30418915

RESUMO

We propose a novel methodology for fault detection and diagnosis in partially-observed Boolean dynamical systems (POBDS). These are stochastic, highly nonlinear, and derivativeless systems, rendering difficult the application of classical fault detection and diagnosis methods. The methodology comprises two main approaches. The first addresses the case when the normal mode of operation is known but not the fault modes. It applies an innovations filter (IF) to detect deviations from the nominal normal mode of operation. The second approach is applicable when the set of possible fault models is finite and known, in which case we employ a multiple model adaptive estimation (MMAE) approach based on a likelihood-ratio (LR) statistic. Unknown system parameters are estimated by an adaptive expectation-maximization (EM) algorithm. Particle filtering techniques are used to reduce the computational complexity in the case of systems with large state-spaces. The efficacy of the proposed methodology is demonstrated by numerical experiments with a large gene regulatory network (GRN) with stuck-at faults observed through a single noisy time series of RNA-seq gene expression measurements.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes/genética , Modelos Genéticos , Algoritmos , RNA-Seq , Saccharomycetales/genética , Processos Estocásticos
7.
Cancer Inform ; 18: 1176935119860822, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31360060

RESUMO

Observational case-control studies for biomarker discovery in cancer studies often collect data that are sampled separately from the case and control populations. We present an analysis of the bias in the estimation of the precision of classifiers designed on separately sampled data. The analysis consists of both theoretical and numerical results, which show that classifier precision estimates can display strong bias under separating sampling, with the bias magnitude depending on the difference between the true case prevalence in the population and the sample prevalence in the data. We show that this bias is systematic in the sense that it cannot be reduced by increasing sample size. If information about the true case prevalence is available from public health records, then a modified precision estimator that uses the known prevalence displays smaller bias, which can in fact be reduced to zero as sample size increases under regularity conditions on the classification algorithm. The accuracy of the theoretical analysis and the performance of the precision estimators under separate sampling are confirmed by numerical experiments using synthetic and real data from published observational case-control studies. The results with real data confirmed that under separately sampled data, the usual estimator produces larger, ie, more optimistic, precision estimates than the estimator using the true prevalence value.

8.
BMC Genomics ; 20(Suppl 6): 435, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31189480

RESUMO

BACKGROUND: Single-cell gene expression measurements offer opportunities in deriving mechanistic understanding of complex diseases, including cancer. However, due to the complex regulatory machinery of the cell, gene regulatory network (GRN) model inference based on such data still manifests significant uncertainty. RESULTS: The goal of this paper is to develop optimal classification of single-cell trajectories accounting for potential model uncertainty. Partially-observed Boolean dynamical systems (POBDS) are used for modeling gene regulatory networks observed through noisy gene-expression data. We derive the exact optimal Bayesian classifier (OBC) for binary classification of single-cell trajectories. The application of the OBC becomes impractical for large GRNs, due to computational and memory requirements. To address this, we introduce a particle-based single-cell classification method that is highly scalable for large GRNs with much lower complexity than the optimal solution. CONCLUSION: The performance of the proposed particle-based method is demonstrated through numerical experiments using a POBDS model of the well-known T-cell large granular lymphocyte (T-LGL) leukemia network with noisy time-series gene-expression data.


Assuntos
Algoritmos , Teorema de Bayes , Biologia Computacional/métodos , Redes Reguladoras de Genes , Leucemia Linfocítica Granular Grande/genética , Análise de Célula Única/métodos , Perfilação da Expressão Gênica , Humanos , Modelos Biológicos , Modelos Genéticos , Incerteza
9.
IEEE Trans Biomed Eng ; 66(10): 2861-2868, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30716030

RESUMO

Dengue has become one of the most important worldwide arthropod-borne diseases. Dengue phenotypes are based on laboratorial and clinical exams, which are known to be inaccurate. OBJECTIVE: We present a machine learning approach for the prediction of dengue fever severity based solely on human genome data. METHODS: One hundred and two Brazilian dengue patients and controls were genotyped for 322 innate immunity single nucleotide polymorphisms (SNPs). Our model uses a support vector machine algorithm to find the optimal loci classification subset and then an artificial neural network (ANN) is used to classify patients into dengue fever or severe dengue. RESULTS: The ANN trained on 13 key immune SNPs selected under dominant or recessive models produced median values of accuracy greater than 86%, and sensitivity and specificity over 98% and 51%, respectively. CONCLUSION: The proposed classification method, using only genome markers, can be used to identify individuals at high risk for developing the severe dengue phenotype even in uninfected conditions. SIGNIFICANCE: Our results suggest that the genetic context is a key element in phenotype definition in dengue. The methodology proposed here is extendable to other Mendelian based and genetically influenced diseases.


Assuntos
Genoma Humano , Aprendizado de Máquina , Dengue Grave/genética , Brasil , Estudos de Casos e Controles , Genótipo , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Valor Preditivo dos Testes , Prognóstico , Sensibilidade e Especificidade
10.
Artigo em Inglês | MEDLINE | ID: mdl-29053466

RESUMO

This paper studies classification of gene-expression trajectories coming from two classes, healthy and mutated (cancerous) using Boolean networks with perturbation (BNps) to model the dynamics of each class at the state level. Each class has its own BNp, which is partially known based on gene pathways. We employ a Gaussian model at the observation level to show the expression values of the genes given the hidden binary states at each time point. We use expectation maximization (EM) to learn the BNps and the unknown model parameters, derive closed-form updates for the parameters, and propose a learning algorithm. After learning, a plug-in Bayes classifier is used to classify unlabeled trajectories, which can have missing data. Measuring gene expressions at different times yields trajectories only when measurements come from a single cell. In multiple-cell scenarios, the expression values are averages over many cells with possibly different states. Via the central-limit theorem, we propose another model for expression data in multiple-cell scenarios. Simulations demonstrate that single-cell trajectory data can outperform multiple-cell average expression data relative to classification error, especially in high-noise situations. We also consider data generated via a mammalian cell-cycle network, both the wild-type and with a common mutation affecting p27.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/genética , Análise de Célula Única/métodos , Algoritmos , Animais , Teorema de Bayes , Humanos , Modelos Genéticos , Modelos Estatísticos , Neoplasias/genética , Neoplasias/metabolismo
11.
IEEE/ACM Trans Comput Biol Bioinform ; 16(4): 1250-1261, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29993697

RESUMO

Control of gene regulatory networks (GRNs) to shift gene expression from undesirable states to desirable ones has received much attention in recent years. Most of the existing methods assume that the cost of intervention at each state and time point, referred to as the immediate cost function, is fully known. In this paper, we employ the Partially-Observed Boolean Dynamical System (POBDS) signal model for a time sequence of noisy expression measurement from a Boolean GRN and develop a Bayesian Inverse Reinforcement Learning (BIRL) approach to address the realistic case in which the only available knowledge regarding the immediate cost function is provided by the sequence of measurements and interventions recorded in an experimental setting by an expert. The Boolean Kalman Smoother (BKS) algorithm is used for optimally mapping the available gene-expression data into a sequence of Boolean states, and then the BIRL method is efficiently combined with the Q-learning algorithm for quantification of the immediate cost function. The performance of the proposed methodology is investigated by applying a state-feedback controller to two GRN models: a melanoma WNT5A Boolean network and a p53-MDM2 negative feedback loop Boolean network, when the cost of the undesirable states, and thus the identity of the undesirable genes, is learned using the proposed methodology.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Aprendizado de Máquina , Algoritmos , Teorema de Bayes , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/metabolismo , Modelos Biológicos , Modelos Genéticos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Neoplasias Cutâneas/metabolismo , Software , Proteína Supressora de Tumor p53/metabolismo , Proteína Wnt-5a/metabolismo
12.
Cancer Inform ; 17: 1176935118790247, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30093796

RESUMO

Scientists are attempting to use models of ever-increasing complexity, especially in medicine, where gene-based diseases such as cancer require better modeling of cell regulation. Complex models suffer from uncertainty and experiments are needed to reduce this uncertainty. Because experiments can be costly and time-consuming, it is desirable to determine experiments providing the most useful information. If a sequence of experiments is to be performed, experimental design is needed to determine the order. A classical approach is to maximally reduce the overall uncertainty in the model, meaning maximal entropy reduction. A recently proposed method takes into account both model uncertainty and the translational objective, for instance, optimal structural intervention in gene regulatory networks, where the aim is to alter the regulatory logic to maximally reduce the long-run likelihood of being in a cancerous state. The mean objective cost of uncertainty (MOCU) quantifies uncertainty based on the degree to which model uncertainty affects the objective. Experimental design involves choosing the experiment that yields the greatest reduction in MOCU. This article introduces finite-horizon dynamic programming for MOCU-based sequential experimental design and compares it with the greedy approach, which selects one experiment at a time without consideration of the full horizon of experiments. A salient aspect of the article is that it demonstrates the advantage of MOCU-based design over the widely used entropy-based design for both greedy and dynamic programming strategies and investigates the effect of model conditions on the comparative performances.

13.
Cancer Inform ; 17: 1176935118786927, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083051

RESUMO

Selected reaction monitoring (SRM) has become one of the main methods for low-mass-range-targeted proteomics by mass spectrometry (MS). However, in most SRM-MS biomarker validation studies, the sample size is very small, and in particular smaller than the number of proteins measured in the experiment. Moreover, the data can be noisy due to a low number of ions detected per peptide by the instrument. In this article, those issues are addressed by a model-based Bayesian method for classification of SRM-MS data. The methodology is likelihood-free, using approximate Bayesian computation implemented via a Markov chain Monte Carlo procedure and a kernel-based Optimal Bayesian Classifier. Extensive experimental results demonstrate that the proposed method outperforms classical methods such as linear discriminant analysis and 3NN, when sample size is small, dimensionality is large, the data are noisy, or a combination of these.

14.
Artigo em Inglês | MEDLINE | ID: mdl-29610100

RESUMO

We propose a methodology for model-based fault detection and diagnosis for stochastic Boolean dynamical systems indirectly observed through a single time series of transcriptomic measurements using Next Generation Sequencing (NGS) data. The fault detection consists of an innovations filter followed by a fault certification step, and requires no knowledge about the possible system faults. The innovations filter uses the optimal Boolean state estimator, called the Boolean Kalman Filter (BKF). In the presence of knowledge about the possible system faults, we propose an additional step of fault diagnosis based on a multiple model adaptive estimation (MMAE) method consisting of a bank of BKFs running in parallel. Performance is assessed by means of false detection and misdiagnosis rates, as well as average times until correct detection and diagnosis. The efficacy of the proposed methodology is demonstrated via numerical experiments using a p53-MDM2 negative feedback loop Boolean network with stuck-at faults that model molecular events commonly found in cancer.


Assuntos
Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Biologia Computacional , Humanos , Neoplasias/genética , Neoplasias/metabolismo
15.
BMC Syst Biol ; 12(Suppl 3): 23, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29589564

RESUMO

BACKGROUND: Expression-based phenotype classification using either microarray or RNA-Seq measurements suffers from a lack of specificity because pathway timing is not revealed and expressions are averaged across groups of cells. This paper studies expression-based classification under the assumption that single-cell measurements are sampled at a sufficient rate to detect regulatory timing. Thus, observations are expression trajectories. In effect, classification is performed on data generated by an underlying gene regulatory network. RESULTS: Network regulation is modeled via a Boolean network with perturbation, regulation not fully determined owing to inherent biological randomness. The binary assumption is not critical because the resulting Markov chain characterizes expression trajectories. We assume a partially known Gaussian observation model belonging to an uncertainty class of models. We derive the intrinsically Bayesian robust classifier to discriminate between wild-type and mutated networks based on expression trajectories. The classifier minimizes the expected error across the uncertainty class relative to the prior distribution. We test it using a mammalian cell-cycle model, discriminating between the normal network and one in which gene p27 is mutated, thereby producing a cancerous phenotype. Tests examine all model aspects, including trajectory length, perturbation probability, and the hyperparameters governing the prior distribution over the uncertainty class. CONCLUSIONS: Simulations show the rates at which the expected error is diminished by smaller perturbation probability, longer trajectories, and hyperparameters that tighten the prior distribution relative to the unknown true network. For average-expression measurement, methods have been proposed to obtain prior distributions. These should be extended to the more mathematically difficult, but more informative, expression trajectories.


Assuntos
Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Análise de Célula Única , Teorema de Bayes , Modelos Genéticos , Processos Estocásticos
16.
Artigo em Inglês | MEDLINE | ID: mdl-27740496

RESUMO

Gene-expression-based phenotype classification is used for disease diagnosis and prognosis relating to treatment strategies. The present paper considers classification based on sequential measurements of multiple genes using gene regulatory network (GRN) modeling. There are two networks, original and mutated, and observations consist of trajectories of network states. The problem is to classify an observation trajectory as coming from either the original or mutated network. GRNs are modeled via probabilistic Boolean networks, which incorporate stochasticity at both the gene and network levels. Mutation affects the regulatory logic. Classification is based upon observing a trajectory of states of some given length. We characterize the Bayes classifier and find the Bayes error for a general PBN and the special case of a single Boolean network affected by random perturbations (BNp). The Bayes error is related to network sensitivity, meaning the extent of alteration in the steady-state distribution of the original network owing to mutation. Using standard methods to calculate steady-state distributions is cumbersome and sometimes impossible, so we provide an efficient algorithm and approximations. Extensive simulations are performed to study the effects of various factors, including approximation accuracy. We apply the classification procedure to a p53 BNp and a mammalian cell cycle PBN.


Assuntos
Redes Reguladoras de Genes/genética , Modelos Estatísticos , Algoritmos , Biologia Computacional , Perfilação da Expressão Gênica , Genes p53/genética , Humanos , Modelos Genéticos , Neoplasias/genética , Transcriptoma
17.
Pattern Recognit, v. 73, p. 172-188, jan. 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2394

RESUMO

We introduce a fast Branch-and-Bound algorithm for optimal feature selection based on a U-curve assumption for the cost function. The U-curve assumption, which is based on the peaking phenomenon of the classification error, postulates that the cost over the chains of the Boolean lattice that represents the search space describes a U-shaped curve. The proposed algorithm is an improvement over the original algorithm for U-curve feature selection introduced recently. Extensive simulation experiments are carried out to assess the performance of the proposed algorithm (IUBB), comparing it to the original algorithm (UBB), as well as exhaustive search and Generalized Sequential Forward Search. The results show that the IUBB algorithm makes fewer evaluations and achieves better solutions under a fixed computational budget. We also show that the IUBB algorithm is robust with respect to violations of the U-curve assumption. We investigate the application of the IUBB algorithm in the design of imaging W-operators and in classification feature selection, using the average mean conditional entropy (MCE) as the cost function for the search.

18.
Pattern Recognit ; 73: p. 172-188, 2018.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14869

RESUMO

We introduce a fast Branch-and-Bound algorithm for optimal feature selection based on a U-curve assumption for the cost function. The U-curve assumption, which is based on the peaking phenomenon of the classification error, postulates that the cost over the chains of the Boolean lattice that represents the search space describes a U-shaped curve. The proposed algorithm is an improvement over the original algorithm for U-curve feature selection introduced recently. Extensive simulation experiments are carried out to assess the performance of the proposed algorithm (IUBB), comparing it to the original algorithm (UBB), as well as exhaustive search and Generalized Sequential Forward Search. The results show that the IUBB algorithm makes fewer evaluations and achieves better solutions under a fixed computational budget. We also show that the IUBB algorithm is robust with respect to violations of the U-curve assumption. We investigate the application of the IUBB algorithm in the design of imaging W-operators and in classification feature selection, using the average mean conditional entropy (MCE) as the cost function for the search.

19.
BMC Bioinformatics ; 18(1): 519, 2017 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-29178844

RESUMO

BACKGROUND: Gene regulatory networks govern the function of key cellular processes, such as control of the cell cycle, response to stress, DNA repair mechanisms, and more. Boolean networks have been used successfully in modeling gene regulatory networks. In the Boolean network model, the transcriptional state of each gene is represented by 0 (inactive) or 1 (active), and the relationship among genes is represented by logical gates updated at discrete time points. However, the Boolean gene states are never observed directly, but only indirectly and incompletely through noisy measurements based on expression technologies such as cDNA microarrays, RNA-Seq, and cell imaging-based assays. The Partially-Observed Boolean Dynamical System (POBDS) signal model is distinct from other deterministic and stochastic Boolean network models in removing the requirement of a directly observable Boolean state vector and allowing uncertainty in the measurement process, addressing the scenario encountered in practice in transcriptomic analysis. RESULTS: BoolFilter is an R package that implements the POBDS model and associated algorithms for state and parameter estimation. It allows the user to estimate the Boolean states, network topology, and measurement parameters from time series of transcriptomic data using exact and approximated (particle) filters, as well as simulate the transcriptomic data for a given Boolean network model. Some of its infrastructure, such as the network interface, is the same as in the previously published R package for Boolean Networks BoolNet, which enhances compatibility and user accessibility to the new package. CONCLUSIONS: We introduce the R package BoolFilter for Partially-Observed Boolean Dynamical Systems (POBDS). The BoolFilter package provides a useful toolbox for the bioinformatics community, with state-of-the-art algorithms for simulation of time series transcriptomic data as well as the inverse process of system identification from data obtained with various expression technologies such as cDNA microarrays, RNA-Seq, and cell imaging-based assays.


Assuntos
Software , Algoritmos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Modelos Biológicos , Interface Usuário-Computador
20.
J Clin Virol ; 89: 39-45, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28242509

RESUMO

BACKGROUND: DENV infection can induce different clinical manifestations varying from mild forms to dengue fever (DF) or the severe hemorrhagic fever (DHF). Several factors are involved in the progression from DF to DHF. No marker is available to predict this progression. Such biomarker could allow a suitable medical care at the beginning of the infection, improving patient prognosis. OBJECTIVES: The aim of this study was to compare the serum expression levels of acute phase proteins in a well-established cohort of dengue fever (DF) and dengue hemorrhagic fever (DHF) patients, in order to individuate a prognostic marker of diseases severity. STUDY DESIGN: The serum levels of 36 cytokines, chemokines and acute phase proteins were determined in DF and DHF patients and compared to healthy volunteers using a multiplex protein array and near-infrared (NIR) fluorescence detection. Serum levels of IL-1ra, IL-23, MIF, sCD40 ligand, IP-10 and GRO-α were also determined by ELISA. RESULTS: At the early stages of infection, GRO-α and IP-10 expression levels were different in DF compared to DHF patients. Besides, GRO-α was positively correlated with platelet counts and IP-10 was negatively correlated with total protein levels. CONCLUSIONS: These findings suggest that high levels of GRO-α during acute DENV infection may be associated with a good prognosis, while high levels of IP-10 may be a warning sign of infection severity.


Assuntos
Biomarcadores/sangue , Citocinas/sangue , Dengue/patologia , Análise Serial de Proteínas , Adolescente , Adulto , Feminino , Humanos , Masculino , Prognóstico , Soro/química , Voluntários , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...