Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 13(7): e12480, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38978304

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a global cancer burden with a 5-year overall survival rate of around 50%, stagnant for decades. A tumour-induced immunosuppressive microenvironment contributes to HNSCC progression, with the adenosine (ADO) pathway and an upregulated expression of inhibitory immune checkpoint regulators playing a key role in this context. The correlation between high neutrophil-to-lymphocyte ratio (NLR) with advanced tumour staging suggests involvement of neutrophils (NØ) in cancer progression. Interestingly, we associated a high NLR with an increased intracellular PD-L1 localization in primary HNSCC samples, potentially mediating more aggressive tumour characteristics and therefore synergistically favouring tumour progression. Still, further research is needed to harness this knowledge for effective treatments and overcome resistance. Since it is hypothesized that the tumour microenvironment (TME) may be influenced by small extracellular vesicles (sEVs) secreted by tumours (TEX), this study aims to investigate the impact of HNSCC-derived TEX on NØ and blockade of ADO receptors as a potential strategy to reverse the pro-tumour phenotype of NØ. UMSCC47-TEX exhibited CD73 enzymatic activity involved in ADO signalling, as well as the immune checkpoint inhibitor PD-L1. Data revealed that TEX induce chemotaxis of NØ and the sustained interaction promotes a shift into a pro-tumour phenotype, dependent on ADO receptors (P1R), increasing CD170high subpopulation, CD73 and PD-L1 expression, followed by an immunosuppressive secretome. Blocking A3R reduced CD73 and PD-L1 expression. Co-culture experiments with HNSCC cells demonstrated that TEX-modulated NØ increase the CD73/PD-L1 axis, through Cyclin D-CDK4/6 signalling. To support these findings, the CAM model with primary tumour was treated with NØ supernatant. Moreover, these NØ promoted an increase in migration, invasion, and reduced cell death. Targeting P1R on NØ, particularly A3R, exhibited potential therapeutic strategy to counteract immunosuppression in HNSCC. Understanding the TEX-mediated crosstalk between tumours and NØ offers insights into immunomodulation for improving cancer therapies.


Assuntos
5'-Nucleotidase , Antígeno B7-H1 , Vesículas Extracelulares , Neoplasias de Cabeça e Pescoço , Neutrófilos , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral , Humanos , Antígeno B7-H1/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Neutrófilos/metabolismo , Neutrófilos/imunologia , Microambiente Tumoral/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , 5'-Nucleotidase/metabolismo , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Linhagem Celular Tumoral , Imunomodulação , Adenosina/metabolismo , Proteínas Ligadas por GPI
2.
Purinergic Signal ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976175

RESUMO

Medulloblastoma is the most common malignant tumor in the pediatric population. Its classification has incorporated key molecular variations alongside histological characterization. CD39 (also known as ENTPD1) and CD73 (also known as NT5E), enzymes of the purinergic signaling pathway, act in synergy to generate extracellular adenosine, creating an immunosuppressive tumor microenvironment. Our study examined the expression of mRNA of these genes in previously described transcriptome data sets of medulloblastoma patient samples from the Cavalli Cohort (n = 763). Survival distribution was estimated according to the Kaplan-Meier method using a median cut-off and log-rank statistics (p ≤ 0.05). In non-WNT and non-SHH medulloblastoma Group 4 (n = 264), the high expression of ENTPD1 and NT5E was significantly related to a lower overall survival (p = 2.7e-04; p = 2.6e-03). In the SHH-activated group (n = 172), the high expression of ENTPD1 was significantly related to lower overall survival (p = 7.8e-03), while the high expression of NT5E was significantly related to greater overall survival (p = 0.017). In the WNT group (n = 63), the expressions of ENTPD1 and NT5E were not significantly correlated with overall survival (p = 0.212; p = 0.101). In non-WNT and non-SHH medulloblastoma Group 3 (n = 113), the high expression of ENTPD1 was significantly related to greater survival (p = 0.034), while expression of NT5E was not significantly related to survival of patients (p = 0.124). This in silico analysis indicates that ENTPD1 (CD39) and NT5E (CD73) can be seen as potential prognostic markers and therapeutic targets for primary medulloblastomas in non-WNT and non-SHH Group 4.

3.
Mol Oncol ; 18(2): 431-452, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103190

RESUMO

The programmed cell death 1 ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) axis is primarily associated with immunosuppression in cytotoxic T lymphocytes (CTLs). However, mounting evidence is supporting the thesis that PD-L1 not only functions as a ligand but mediates additional cellular functions in tumor cells. Moreover, it has been demonstrated that PD-L1 is not exclusively localized at the cellular membrane. Subcellular fractionation revealed the presence of PD-L1 in various cellular compartments of six well-characterized head and neck cancer (HNC) cell lines, including the nucleus. Via Western blotting, we detected PD-L1 in its well-known glycosylated/deglycosylated state at 40-55 kDa. In addition, we detected previously unknown PD-L1 variants with a molecular weight at approximately 70 and > 150 kDa exclusively in nuclear protein fractions. These in vitro findings were confirmed with primary tumor samples from head and neck squamous cell carcinoma (HNSCC) patients. Furthermore, we demonstrated that nuclear PD-L1 variant expression is cell-cycle-dependent. Immunofluorescence staining of PD-L1 in different cell cycle phases of synchronized HNC cells supported these observations. Mechanisms of nuclear PD-L1 trafficking remain less understood; however, proximity ligation assays showed a cell-cycle-dependent interaction of the cytoskeletal protein vimentin with PD-L1, whereas vimentin could serve as a potential shuttle for nuclear PD-L1 transportation. Mass spectrometry after PD-L1 co-immunoprecipitation, followed by gene ontology analysis, indicated interaction of nuclear PD-L1 with proteins involved in DNA remodeling and messenger RNA (mRNA) splicing. Our results in HNC cells suggest a highly complex regulation of PD-L1 and multiple tumor cell-intrinsic functions, independent of immune regulation. These observations bear significant implications for the therapeutic efficacy of immune checkpoint inhibition.


Assuntos
Antígeno B7-H1 , Neoplasias de Cabeça e Pescoço , Humanos , Antígeno B7-H1/metabolismo , Ciclo Celular , Neoplasias de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Vimentina
4.
Neuromolecular Med ; 25(4): 573-585, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37740824

RESUMO

Medulloblastoma (MB) is a heterogeneous group of malignant pediatric brain tumors, divided into molecular groups with distinct biological features and prognoses. Currently available therapy often results in poor long-term quality of life for patients, which will be afflicted by neurological, neuropsychiatric, and emotional sequelae. Identifying novel therapeutic agents capable of targeting the tumors without jeopardizing patients' quality of life is imperative. Rosmarinic acid (RA) is a plant-derived compound whose action against a series of diseases including cancer has been investigated, with no side effects reported so far. Previous studies have not examined whether RA has effects in MB. Here, we show RA is cytotoxic against human Daoy (IC50 = 168 µM) and D283 (IC50 = 334 µM) MB cells. Exposure to RA for 48 h reduced histone deacetylase 1 (HDAC1) expression while increasing H3K9 hyperacetylation, reduced epidermal growth factor (EGFR) expression, and inhibited EGFR downstream targets extracellular-regulated kinase (ERK)1/2 and AKT in Daoy cells. These modifications were accompanied by increased expression of CDKN1A/p21, reduced expression of SOX2, and a decrease in proliferative rate. Treatment with RA also reduced cancer stem cell markers expression and neurosphere size. Taken together, our findings indicate that RA can reduce cell proliferation and stemness and induce cell cycle arrest in MB cells. Mechanisms mediating these effects may include targeting HDAC1, EGFR, and ERK signaling, and promoting p21 expression, possibly through an increase in H3K9ac and AKT deactivation. RA should be further investigated as a potential anticancer agent in experimental MB.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Humanos , Criança , Meduloblastoma/tratamento farmacológico , Meduloblastoma/patologia , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Qualidade de Vida , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Proliferação de Células , Neoplasias Cerebelares/tratamento farmacológico , Receptores ErbB/metabolismo , Receptores ErbB/farmacologia , Receptores ErbB/uso terapêutico , Linhagem Celular Tumoral
5.
Purinergic Signal ; 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402102

RESUMO

Glioblastoma (GB) is the most common primary brain tumor in adults and carries a dismal prognosis, despite the best available treatment. The 2021 WHO Classification of CNS tumors incorporated molecular profiling to better define the characteristics and prognosis of tumor types and subtypes. These recent advances in diagnosis have not yet resulted in breakthrough therapies capable of shifting the treatment paradigm. NT5E/CD73 is a cell surface enzyme that participates in a complex purinergic pathway in synergy with ENTPD1/CD39 producing extracellular adenosine (ADO) from ATP. ADO promotes tumor progression by inducing immunosuppression, stimulating adhesion, invasion, and angiogenesis. In this study, we performed an in silico analysis of 156 human glioblastoma samples in an unexplored public database to investigate the transcriptional levels of NT5E and ENTPD1. The analysis revealed a significant increase in transcription levels of the genes under study in GB samples versus non-tumor brain tissue samples, in concordance with previous studies. High transcriptional levels of NT5E or ENTPD1 were independently related to a decrease in overall survival (p = 5.4e-04; 1.1e-05), irrespective of the IDH mutation status. NT5E transcriptional levels were significantly higher in GB IDH wild-type patients compared to GB IDH-mutant; however, ENTPD1 levels showed no significant difference, p ≤ 0.001. This in silico study indicates the need for a deeper understanding of the purinergic pathway relation to GB development, also inspiring future population studies that could explore ENTPD1 and NT5E not only as prognostic markers but also as potential therapeutic targets.

6.
Mol Cell Biochem ; 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37354361

RESUMO

Pregnancy and lactation are important stages of fetal development. Therefore, this study investigated how different maternal diets offered during gestation and lactation periods affect adipose tissue inflammation and liver tissue oxidative stress of dams and their female offspring. Female BALB/c albino mice (60 days old) were randomized into three groups receiving a standard (CONT), hypercaloric (HD), or restricted (RD) diet during the pregnancy. After birth, female offspring weaned at 21 days were divided into two groups that received a standard or restricted diet (CONT/CONT, CONT/RD, RD/CONT, RD/RD, HD/CONT, and HD/RD) until 100 days old. Histological, oxidative parameters and inflammatory infiltrate of dams' and offspring's liver and adipose tissue were evaluated. HD dams presented non-alcoholic steatohepatitis (NASH) diagnosis and an increase in tumor necrosis factor-alpha (TNF-α) concentrations when compared to the RD and CONT dams, indicating a pro-inflammatory state. High concentrations of malondialdehyde (MDA) formation and catalase (CAT) activity in HD when compared to the CONT in the liver. SOD activity decreased in RD mice compared to CONT, and the SOD/CAT ratio was decreased in the RD and HD in comparison to the CONT. The maternal diet leads to an increase in SOD in RD/RD compared to HD/RD. RD-fed dams showed an increase in inflammatory infiltrates compared to CONT, evidencing changes caused by a restrictive diet. In the HD/CONT offspring, we verified an increase in inflammatory infiltrates in relation to the offspring fed a standard diet. In conclusion, HD, and RD, during pregnancy and lactation, altered the liver and adipose tissues of mothers. Furthermore, the maternal diet negatively impacts the offspring's adipose tissue but does not cause liver damage in these animals in adult life.

7.
Front Immunol ; 14: 1183465, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37292196

RESUMO

Introduction: The tumor microenvironment (TME) of glioblastoma (GB) is characterized by an increased infiltration of immunosuppressive cells that attenuate the antitumor immune response. The participation of neutrophils in tumor progression is still controversial and a dual role in the TME has been proposed. In this study, we show that neutrophils are reprogrammed by the tumor to ultimately promote GB progression. Methods: Using in vitro and in vivo assays, we demonstrate the existence of bidirectional GB and neutrophil communication, directly promoting an immunosuppressive TME. Results and discussion: Neutrophils have shown to play an important role in tumor malignancy especially in advanced 3D tumor model and Balb/c nude mice experiments, implying a time- and neutrophil concentration-dependent modulation. Studying the tumor energetic metabolism indicated a mitochondria mismatch shaping the TME secretome. The given data suggests a cytokine milieu in patients with GB that favors the recruitment of neutrophils, sustaining an anti-inflammatory profile which is associated with poor prognosis. Besides, glioma-neutrophil crosstalk has sustained a tumor prolonged activation via NETs formation, indicating the role of NFκB signaling in tumor progression. Moreover, clinical samples have indicated that neutrophil-lymphocyte ratio (NLR), IL-1ß, and IL-10 are associated with poor outcomes in patients with GB. Conclusion: These results are relevant for understanding how tumor progression occurs and how immune cells can help in this process.


Assuntos
Glioblastoma , Neutrófilos , Animais , Camundongos , Camundongos Nus , Transdução de Sinais , Imunidade , Microambiente Tumoral
8.
Cell Mol Neurobiol ; 43(6): 2939-2951, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37055607

RESUMO

Melanoma is the most aggressive type of skin cancer. Brain metastasis is the worst scenario in metastatic melanoma and the treatment options for these patients are limited. Temozolomide (TMZ) is a chemotherapy agent used to treat primary central nervous system tumors. Our objective was to develop chitosan-coated nanoemulsion containing temozolomide (CNE-TMZ) for nasal route administration to melanoma brain metastasis treatment. A preclinical model of metastatic brain melanoma was standardized, and the efficiency of the developed formulation was further determined in vitro and in vivo. The nanoemulsion was done by spontaneous emulsification method and the formulation was characterized by size, pH, polydispersity index, and zeta potential. Culture assessments to determine cell viability were done in the A375 human melanoma cell line. To determine the safety of formulation, healthy C57/BL6 mice were treated with a nanoemulsion without TMZ. The model in vivo used B16-F10 cells implanted by stereotaxic surgery in C57/BL6 mice brains. The results demonstrate that the preclinical model used showed to be useful to analyze the efficiency of new candidate drugs to treat melanoma brain metastasis. The chitosan-coated nanoemulsions with TMZ showed the expected physicochemical characteristics and demonstrated safety and efficacy, reducing around 70% the tumor size compared to control mice, and presenting a tendency in mitotic index reduction, becoming an interesting approach to treat melanoma brain metastasis.


Assuntos
Neoplasias Encefálicas , Quitosana , Melanoma , Humanos , Animais , Camundongos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/secundário , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Linhagem Celular Tumoral
9.
Immunol Lett ; 256-257: 20-27, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36958430

RESUMO

Glioblastoma (GB) is the most aggressive type of brain tumor with heterogeneity, strong invasive ability, and high resistance to therapy due to immunosuppressive mechanisms. CD73 is an overexpressed enzyme in GB that acts via two main mechanisms: (1) CD73 acts as an adhesion protein independent of the enzymatic activity or (2) via the catalyses of AMP to adenosine (ADO) generating a strong modulatory molecule that induces alterations in the tumor cells and in the tumor microenvironment cells (TME). Taken together, CD73 is receiving attention during the last years and studies demonstrated its dual potential benefit as a target to GB therapy. Here, we review the roles of CD73 and P1 receptors (ADO receptors) in GB, the impact of CD73 in the immune interactions between tumor and other immune cells, the proposed therapeutic strategies based on CD73 regulation, and discuss the gap in knowledge and further directions to bring this approach from preclinical to clinical use.


Assuntos
5'-Nucleotidase , Neoplasias Encefálicas , Glioblastoma , Humanos , Adenosina/metabolismo , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/metabolismo , Glioblastoma/terapia , Imunossupressores , Transdução de Sinais , Microambiente Tumoral
10.
J Control Release ; 355: 343-357, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36731799

RESUMO

Glioblastoma (GB) is the worst and most common primary brain tumor. Temozolomide (TMZ), an alkylating agent, is widely used for treating primary and recurrent high-grade gliomas. However, at least 50% of TMZ treated patients do not respond to TMZ and the development of chemoresistance is a major problem. Here, we designed a lipid nanoemulsion containing a thermoresponsive polymer (poloxamer 407) aiming to improve TMZ release into the brain via nasal delivery. Increasing amounts of poloxamer 407 were added to preformed nanoemulsions (250 nm-range) obtained by spontaneous emulsification. The influence of the polymer concentration (from 2.5% to 12.5%) and temperature on viscosity was clearly evidenced. Such effect was also noticed on the mucoadhesiveness of formulations, as well as TMZ release rate and retention/permeation through nasal porcine mucosa using Franz-type diffusion cells. From these results, a formulation containing 10% of poloxamer (NTMZ-P10) was selected for further experiments by nasal route. A significantly higher TMZ amount was observed in the brain of rats from NTMZ-P10 in comparison with controls. Finally, our results show that formulation reduced significantly tumor growth by three-fold: 103.88 ± 43.67 mm3 (for NTMZ-P10) and 303.28 ± 95.27 mm3 (control). Overall, these results suggest the potential of the thermoresponsive formulation, administered by the non-invasive nasal route, as a future effective glioblastoma treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Ratos , Animais , Suínos , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Administração Intranasal , Poloxâmero/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Antineoplásicos Alquilantes/uso terapêutico
11.
Clin Exp Immunol ; 213(1): 102-113, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36752300

RESUMO

Head and neck squamous cell carcinomas (HNSCCs) evade immune responses through multiple resistance mechanisms. Extracellular vesicles (EVs) released by the tumor and interacting with immune cells induce immune dysfunction and contribute to tumor progression. This study evaluates the clinical relevance and impact on anti-tumor immune responses of gene signatures expressed in HNSCC and associated with EV production/release. Expression levels of two recently described gene sets were determined in The Cancer Genome Atlas Head and Neck Cancer cohort (n = 522) and validated in the GSE65858 dataset (n = 250) as well as a recently published single-cell RNA sequencing dataset (n = 18). Clustering into HPV(+) and HPV(-) patients was performed in all cohorts for further analysis. Potential associations between gene expression levels, immune cell infiltration, and patient overall survival were analyzed using GEPIA2, TISIDB, TIMER, and the UCSC Xena browser. Compared to normal control tissues, vesiculation-related genes were upregulated in HNSCC cells. Elevated gene expression levels positively correlated (P < 0.01) with increased abundance of CD4(+) T cells, macrophages, neutrophils, and dendritic cells infiltrating tumor tissues but were negatively associated (P < 0.01) with the presence of B cells and CD8(+) T cells in the tumor. Expression levels of immunosuppressive factors NT5E and TGFB1 correlated with the vesiculation-related genes and might explain the alterations of the anti-tumor immune response. Enhanced expression levels of vesiculation-related genes in tumor tissues associates with the immunosuppressive tumor milieu and the reduced infiltration of B cells and CD8(+) T cells into the tumor.


Assuntos
Vesículas Extracelulares , Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Linfócitos T CD8-Positivos , Infecções por Papillomavirus/genética , Neoplasias de Cabeça e Pescoço/genética , Prognóstico , Microambiente Tumoral
12.
Appl Biochem Biotechnol ; 195(7): 4011-4035, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36652091

RESUMO

Endophytic fungi are important sources of anticancer compounds. An endophytic fungus was isolated from the medicinal plant Achyrocline satureioides, and molecularly identified as Biscogniauxia sp. (family Xylariaceae) based on partial nucleotide sequences of the internal transcribed spacer genomic region (GenBank Accession No. ON257911). The chemical characterization and cytotoxic properties of secondary metabolites produced by Biscogniauxia sp. were evaluated in a human melanoma cell line (A375). The fungus was grown in potato-dextrose liquid medium for 25 days, and the extracted compounds were subjected to solid-phase fractionation to obtain the purified FDCM fraction, for which the metabolites were elucidated via ultra-performance chromatography coupled to a mass spectrometer. In the present study, 17 secondary metabolites of Biscogniauxia sp., including nine polyketide derivatives, five terpenoids, and three isocoumarins, were putatively identified. This is the first study to report of the ability of Biscogniauxia sp. in the production of isocoumarin orthosporin; the terpenoids nigriterpene A and 10-xylariterpenoid; the polyketide derivatives daldinin C, 7'dechloro-5'-hydroxygriseofulvin, daldinone D, Sch-642305, curtachalasin A, cytochalasin E, epoxycytochalasins Z8, Z8 isomer, and Z17. Furthermore, this study has reported the biosynthesis of Sch-642305 by a Xylariaceae fungus for the first time. FDCM significantly reduced the viability and proliferation of human melanoma cells at half-maximal inhibitory concentrations ​​of 10.34 and 6.89 µg/mL, respectively, and induced late apoptosis/necrosis and cell cycle arrest in G2/M phase after 72 h of treatment. Given its ability to produce unique metabolites with promising cytotoxic effects, Biscogniauxia sp. of A. satureioides may be a reservoir of compounds with important therapeutic applications.


Assuntos
Achyrocline , Antineoplásicos , Melanoma , Humanos , Achyrocline/química , Extratos Vegetais/química , Antineoplásicos/farmacologia , Linhagem Celular , Melanoma/tratamento farmacológico , Fungos
13.
Cancers (Basel) ; 14(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36230810

RESUMO

Colorectal cancer (CRC) is among the most common cancers and exhibits a high fatality rate. Gut inflammation is related to CRC, with loss of homeostasis in immune cell activities. The cells of the innate and adaptive immune system, including macrophages, neutrophils, mast cells, and lymphocytes, are present in most solid tumors. Purinergic signaling allows for communication between immune cells within the tumor microenvironment (TME) and can alter the TME to promote tumor progression. This system is regulated by the availability of extracellular purines to activate purinoceptors (P1 and P2) and is tightly controlled by ectonucleotidases (E-NPP, CD73/CD39, ADA) and kinases, which interact with and modify nucleotides and nucleosides availability. In this review, we compiled articles detailing the relationship of the purinergic system with CRC progression. We found that increased expression of CD73 leads to the suppression of effector immune cell functions and tumor progression in CRC. The P1 family purinoceptors A1, A2A, and A2B were positively associated with tumor progression, but A2B resulted in increased cancer cell apoptosis. The P2 family purinoceptors P2X5, P2X7, P2Y2, P2Y6, and P2Y12 were factors primarily associated with promoting CRC progression. In summary, CD39/CD73 axis and the purinergic receptors exhibit diagnostic and prognostic value and have potential as therapeutic targets in CRC.

14.
J Nutr Biochem ; 110: 109156, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36255060

RESUMO

Glioblastoma (GBM) is the deadliest primary brain tumor in adults due to the high rate of relapse with current treatment. Therefore, the search for therapeutic alternatives is urgent. Gallic acid (GA), a potent natural antioxidant, has antitumor and modulatory actions on purinergic signaling. In this study, we investigated the cytotoxic effects of GA on the rat GBM (C6) cell line and on astrocyte culture and analyzed its role in regulating oxidative stress and purinergic enzymes involved in GBM proliferation. Cells were exposed to GA from 50 to 400 µM for 24 and/or 48 h. Next, the effect of GA was evaluated in the preclinical model of GBM. Wistar rats were treated with 50 or 100 mg/kg of GA for 15 days, and cerebral and systemic redox status and degradation of adenine nucleotides and nucleosides in circulating platelets, lymphocytes, and serum were evaluated. Our results demonstrated that GA has selective anti-glioma activity in vitro, without inducing cytotoxicity in astrocyte. Furthermore, GA prevented oxidative stress and changes in the hydrolysis of nucleotides in GBM cells. The anti-glioma effect was also observed in vivo, as GA reduced tumor volume by 90%. Interestingly, GA decreased the oxidative damage induced by a tumor in the brain, serum, and platelets, and, also prevented changes in the degradation of nucleotides and nucleosides in lymphocytes, platelets, and serum. These results indicate, for the first time, the therapeutic potential of GA in a preclinical model of GBM, whose effects may be related to its role in redox and purinergic modulation.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Ratos , Glioblastoma/metabolismo , Ácido Gálico/farmacologia , Ácido Gálico/uso terapêutico , Ratos Wistar , Glioma/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Oxirredução , Homeostase , Nucleotídeos/metabolismo , Linhagem Celular Tumoral
15.
Metab Brain Dis ; 37(6): 1875-1886, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35556196

RESUMO

The excessive production of pro-inflammatory mediators, characteristic of obesity, leads to neuroinflammation. Zinc (Zn) and the branched-chain amino acids (BCAA) are supplements known for their immunomodulatory properties. Our goal was to evaluate if Zn or BCAA supplementation can affect long-term recognition memory and neuroinflammatory parameters of obese rats after a high-fat diet (HFD). Three-month-old Wistar rats were divided into six groups: Standard diet (SD) + vehicle; SD + Zn; SD + BCAA; High-fat diet (HFD) + vehicle; HFD + Zn; and HFD + BCAA. Diets were administrated for 19 weeks, Zn (1,2 mg/kg/day) or BCAA (750 mg/kg/day) supplementation was conducted in the last 4 weeks. Long-term recognition memory was evaluated by the novel object recognition test. IL-1ß immunoreactivity in the cortex and hippocampus, and IL-6 levels in the cortex tissue were assessed. Astrogliosis were evaluated through GFAP + cell count and morphological analysis (Sholl Method). Zn supplementation improved object recognition memory in HFD-fed rats, which was not observed following BCAA supplementation. The levels of IL-6 in the cerebral cortex were higher after HFD, which was not diminished after neither supplementation. Obesity also led to increased IL-1ß immunoreactivity in the cerebral cortex and hippocampus, which was reduced by Zn. BCAA supplementation also diminished IL-1ß immunoreactivity, but only in the hippocampus. We also showed that astrocyte reactivity caused by HFD is area-dependent, being the cerebral cortex more susceptible to the diet. Even though BCAA and Zn can affect IL-1ß immunoreactivity and astrocyte morphology, only Zn improved memory. Future studies are needed to clarify the pathways by which Zn improves cognition in obesity.


Assuntos
Aminoácidos de Cadeia Ramificada , Zinco , Aminoácidos de Cadeia Ramificada/farmacologia , Aminoácidos de Cadeia Ramificada/uso terapêutico , Animais , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Inflamação/tratamento farmacológico , Interleucina-6 , Obesidade/tratamento farmacológico , Ratos , Ratos Wistar , Zinco/farmacologia
16.
Int J Pharm ; 617: 121584, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35202726

RESUMO

Malignant glioblastoma (GB) is the predominant primary brain tumour in adults, but despite the efforts towards novel therapies, the median survival of GB patients has not significantly improved in the last decades. Therefore, localised approaches that treat GB straight into the tumour site provide an alternative to enhance chemotherapy bioavailability and efficacy, reducing systemic toxicity. Likewise, the discovery of protein targets, such as the NIMA-related kinase 1 (Nek1), which was previously shown to be associated with temozolomide (TMZ) resistance in GB, has stimulated the clinical development of target therapy approaches to treat GB patients. In this study, we report an electrospun polyvinyl alcohol (PVA) microfiber (MF) brain-implant prepared for the controlled release of Nek1 protein inhibitor (iNek1) and TMZ or TMZ-loaded nanoparticles. The formulations revealed adequate stability and drug loading, which prolonged the drugs' release allowing a sustained exposure of the GB cells to the treatment and enhancing the drugs' therapeutic effects. TMZ-loaded MF provided the highest concentration of TMZ within the brain of tumour-bearing rats, and it was statistically significant when compared to TMZ via intraperitoneal (IP). All animals treated with either co-therapy formulation (TMZ + iNek1 MF or TMZ nanoparticles + iNek1 MF) survived until the endpoint (60 days), whereas the Blank MF (drug-unloaded), TMZ MF and TMZ IP-treated rats' median survival was found to be 16, 31 and 25 days, respectively. The tumour/brain area ratio of the rats implanted with either MF co-therapy was found to be reduced by 5-fold when compared to Blank MF-implanted rats. Taken together, our results strongly suggest that Nek1 is an important GB oncotarget and the inhibition of Nek1's activity significantly decreases GB cells' viability and tumour size when combined with TMZ treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Animais , Antineoplásicos Alquilantes , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Glioblastoma/metabolismo , Humanos , Quinase 1 Relacionada a NIMA , Ratos , Temozolomida/farmacologia
17.
Stem Cell Rev Rep ; 18(4): 1495-1509, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34403074

RESUMO

Many studies have shown that mesenchymal stromal cells (MSCs) and their secreted factors may modulate the biology of tumor cells. However, how these interactions happen in vivo remains unclear. In the present study, we investigated the effects of rat adipose-derived stromal cells (ADSCs) and their conditioned medium (ADSC-CM) in glioma tumor growth and malignancy in vivo. Our results showed that when we co-injected C6 cells plus ADSCs into the rat brains, the tumors generated were larger and the animals exhibited shorter survival, when compared with tumors of the animals that received only C6 cells or C6 cells pre-treated with ADSC-CM. We further showed that the animals that received C6 plus ADSC did not present enhanced expression of CD73 (a gene highly expressed in ADSCs), indicating that the tumor volume observed in these animals was not a mere consequence of the higher density of cells administered in this group. Finally, we showed that the animals that received C6 + ADSC presented tumors with larger necrosis areas and greater infiltration of immune cells. These results indicate that the immunoregulatory properties of ADSCs and its contribution to tumor stroma can support tumor growth leading to larger zones of necrosis, recruitment of immune cells, thus facilitating tumor progression. Our data provide new insights into the way by which ADSCs and tumor cells interact and highlight the importance of understanding the fate and roles of MSCs in tumor sites in vivo, as well as their intricate crosstalk with cancer cells.


Assuntos
Glioblastoma , Tecido Adiposo/metabolismo , Animais , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Glioblastoma/genética , Glioblastoma/terapia , Necrose , Ratos , Células Estromais/metabolismo
18.
Med Chem ; 18(4): 452-462, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34365956

RESUMO

AIMS: The purpose of our study was to explore the molecular hybridization between 2- imino-4-thizolidione and piridinic scaffolds and its potential antitumor activity. BACKGROUND: Glioblastoma is the most aggressive glioma tumor clinically diagnosed malignant and highly recurrent primary brain tumor type. The standard of treatment for a glioblastoma is surgery, followed by radiation and chemotherapy using temozolomide. However, the chemoresistance has become the main barrier to treatment success. 2-imino-4-thiazolidinones are an important class of heterocyclic compounds that feature anticancer activity; however the antiglioblastoma activity is yet to be explored. OBJECTIVE: To synthesize and characterize a series of novel 2-imino-4-thiazolidinones and evaluate their antiglioblastoma activity. METHODS: The 2-imino-4-thiazolidinone (5a-p) was synthesized according to the literature with modifications. Compounds were identified and characterized using spectroscopic analysis and X-ray diffraction. The antitumor activity was analyzed by 3-(4,5- dimethyl)-2,5-diphenyltetrazolium bromide (MTT) assay both in primary astrocyte and glioma (C6). Apoptosis and cell cycle phase were determined by flow cytometry analysis. The expression of caspase-3/7 was measured by luminescence assay. Oxidative stress parameters as: Determination of Reactive Oxygen Species (ROS), Superoxide Dismutase (SOD) activity, Catalase (CAT) activity and total sulfhydryl content quantification were analyzed by colorimetric assays according to literature. RESULTS: Among sixteen synthesized compounds, three displayed potent antitumor activities against tested glioblastoma cell line showed IC50 values well below the standard drug temozolomide. Therefore, compounds 5a, 5l and 5p were evaluated using cell cycle and death analysis, due to potent toxicity (2.17±1.17, 6.24±0.59, 2.93±1.12µM, respectively) in C6 cell line. The mechanism of action studies demonstrated that 5a and 5l induced apoptosis significantly increase the percentage of cells in Sub-G1 phase in the absence of necrosis. Consistent with these results, caspase-3/7 assay revealed that 5l presents pro-apoptotic activity due to the significant stimulation of caspases-3/7. Moreover, 5a, 5l and 5p increased antioxidant defense and decreased reactive oxygen species (ROS) production. CONCLUSION: The compounds were synthesized with good yield and three of these presented (5a, 5l and 5p) good cytotoxicity against C6 cell line. Both affected cell cycle distribution via arresting more C6 cell line at Sub-G1 phase promoting apoptosis. Furthermore, 5a, 5l and 5p modulated redox status. These findings suggest that these compounds can be considered as promising lead molecules for further development of potential antitumor agents.


Assuntos
Antineoplásicos , Glioblastoma , Glioma , Antineoplásicos/química , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/tratamento farmacológico , Humanos , Espécies Reativas de Oxigênio/metabolismo
19.
Purinergic Signal ; 17(4): 713-724, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34604944

RESUMO

Sepsis is life-threatening organ dysfunction caused by a dysregulated inflammatory and immune response to infection. Sepsis involves the combination of exaggerated inflammation and immune suppression. During systemic infection and sepsis, the liver works as a lymphoid organ with key functions in regulating the immune response. Extracellular nucleotides are considered damage-associated molecular patterns and are involved in the control of inflammation. Their levels are finely tuned by the membrane-associated ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) enzyme family. Although previous studies have addressed the role of NTPDase1 (CD39), the role of the other extracellular NTPDases, NTPDase2, -3, and -8, in sepsis is unclear. In the present studies we identified NTPDase8 as a top downregulated gene in the liver of mice submitted to cecal ligation-induced sepsis. Immunohistochemical analysis confirmed the decrease of NTPDase8 expression at the protein level. In vitro mechanistic studies using HepG2 hepatoma cells demonstrated that IL-6 but not TNF, IL-1ß, bacteria, or lipopolysaccharide are able to suppress NTPDase8 gene expression. NTPDase8, as well as NTPDase2 and NTPDase3 mRNA was downregulated, whereas NTPDase1 (CD39) mRNA was upregulated in polymorphonuclear leukocytes from both inflamed and septic patients compared to healthy controls. Although the host's inflammatory response of polymicrobial septic NTPDase8 deficient mice was no different from that of wild-type mice, IL-6 levels in NTPDase8 deficient mice were higher than IL-6 levels in wild-type mice with pneumonia. Altogether, the present data indicate that extracellular NTPDases are differentially regulated during sepsis.


Assuntos
Adenosina Trifosfatases/metabolismo , Inflamação/metabolismo , Leucócitos/metabolismo , Sepse/metabolismo , Adenosina Trifosfatases/genética , Animais , Feminino , Humanos , Inflamação/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Sepse/genética
20.
Cytokine Growth Factor Rev ; 61: 16-26, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34479816

RESUMO

Neutrophils are the first line of defense against tissue injury and play an important role in tumor progression. Tumor-associated neutrophils (TANs) mediate pro-tumor immunosuppressive activity and their infiltration into tumors is associated with poor outcome in a variety of malignant diseases. The tumor cell-neutrophil crosstalk is mediated by small extracellular vesicles (sEVs) also referred to as exosomes which represent a major mechanism for intercellular communication. This review will address the role of neutrophil-derived sEVs (NEX) in reprogramming the TME and on mechanisms that regulate the dual potential of NEX to promote tumor progression on one hand and suppress tumor growth on the other. Emerging data suggest that both, NEX and tumor-derived sEVs (TEX) carry complex molecular cargos which upon delivery to recipient cells in the tumor microenvironment (TME) modulate their behavior and reprogram them to mediate pro-inflammatory or immunosuppressive responses. Although it remains unknown how the balance between the often conflicting signaling of TEX and NEX is regulated, this review is an attempt to provide insights into mechanisms that underpin this complex bidirectional crosstalk. A better understanding of the signals NEX process or deliver in the TME might lead to the development of novel approaches to the control of tumor progression in the future.


Assuntos
Exossomos , Vesículas Extracelulares , Comunicação Celular , Neutrófilos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...