Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
EBioMedicine ; 95: 104752, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37572644

RESUMO

BACKGROUND: Pharmacological synergisms are an attractive anticancer strategy. However, with more than 5000 approved-drugs and compounds in clinical development, identifying synergistic treatments represents a major challenge. METHODS: High-throughput screening was combined with target deconvolution and functional genomics to reveal targetable vulnerabilities in glioblastoma. The role of the top gene hit was investigated by RNA interference, transcriptomics and immunohistochemistry in glioblastoma patient samples. Drug combination screen using a custom-made library of 88 compounds in association with six inhibitors of the identified glioblastoma vulnerabilities was performed to unveil pharmacological synergisms. Glioblastoma 3D spheroid, organotypic ex vivo and syngeneic orthotopic mouse models were used to validate synergistic treatments. FINDINGS: Nine targetable vulnerabilities were identified in glioblastoma and the top gene hit RRM1 was validated as an independent prognostic factor. The associations of CHK1/MEK and AURKA/BET inhibitors were identified as the most potent amongst 528 tested pairwise drug combinations and their efficacy was validated in 3D spheroid models. The high synergism of AURKA/BET dual inhibition was confirmed in ex vivo and in vivo glioblastoma models, without detectable toxicity. INTERPRETATION: Our work provides strong pre-clinical evidence of the efficacy of AURKA/BET inhibitor combination in glioblastoma and opens new therapeutic avenues for this unmet medical need. Besides, we established the proof-of-concept of a stepwise approach aiming at exploiting drug poly-pharmacology to unveil druggable cancer vulnerabilities and to fast-track the identification of synergistic combinations against refractory cancers. FUNDING: This study was funded by institutional grants and charities.


Assuntos
Antineoplásicos , Glioblastoma , Animais , Camundongos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Aurora Quinase A , Sinergismo Farmacológico , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Combinação de Medicamentos
2.
Oncotarget ; 11(8): 759-774, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32165998

RESUMO

Glioblastoma (GBM) are aggressive brain tumors with limited treatment options. Cancer stem-like cells (CSLCs) contribute to GBM invasiveness, representing promising targets. BAL101553, a prodrug of BAL27862, is a novel small molecule tubulin-binding agent, promoting tumor cell death through spindle assembly checkpoint activation, which is currently in Phase 1/2a in advanced solid tumor patients including GBM. This study aimed to evaluate long-term daily oral BAL101553 treatment of mice orthotopically grafted with GBM CSLCs (GBM6) according to EB1 expression-level, and to decipher its mechanism of action on GBM stem cells. Oral treatment with BAL101553 for 100 days provoked a large EB1 expression level-dependent survival benefit, together with a decrease in tumor growth and brain invasion. Formation of vascular structures by the fluorescent GBM6-GFP-sh0 cells, mimicking endothelial vascular networks, was observed in the brains of control grafted mice. Following BAL101553 treatment, vessels were no longer detectable, suggesting inhibition of the endothelial trans-differentiation of GBM stem cells. In vitro, BAL27862 treatment resulted in a switch to the endothelial-like phenotype of GBM6 towards an astrocytic phenotype. Moreover, the drug inhibited secretion of VEGF, thus preventing normal endothelial cell migration activated by CSLCs. The decrease in VEGF secretion was confirmed in a human GBM explant following drug treatment. Altogether, our data first confirm the potential of EB1 expression as a response-predictive biomarker of BAL101553 in GBM we previously published and add new insights in BAL101553 long-term action by counteracting CSLCs mediated tumor angiogenesis. Our results strongly support BAL101553 clinical studies in GBM patients.

3.
ACS Omega ; 4(19): 18342-18354, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31720536

RESUMO

Highly water-soluble, nontoxic organic nanoparticles on which paclitaxel (PTX), a hydrophobic anticancer drug, has been covalently bound via an ester linkage (4.5% of total weight) have been prepared for the treatment of glioblastoma. These soft fluorescent organic nanoparticles (FONPs), obtained from citric acid and diethylenetriamine by microwave-assisted condensation, show suitable size (Ø = 17-30 nm), remarkable solubility in water, softness as well as strong blue fluorescence in an aqueous environment that are fully retained in cell culture medium. Moreover, these FONPs were demonstrated to show in vitro safety and preferential internalization in glioblastoma cells through caveolin/lipid raft-mediated endocytosis. The PTX-conjugated FONPs retain excellent solubility in water and remain stable in water (no leaching), while they showed anticancer activity against glioblastoma cells in two-dimensional and three-dimensional culture. PTX-specific effects on microtubules reveal that PTX is intracellularly released from the nanocarriers in its active form, in relation with an intracellular-promoted lysis of the ester linkage. As such, these hydrophilic prodrug formulations hold major promise as biocompatible nanotools for drug delivery.

4.
Sci Rep ; 9(1): 12890, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31501470

RESUMO

Capable of generating plasmonic and other effects, gold nanostructures can offer a variety of diagnostic and therapy functionalities for biomedical applications, but conventional chemically-synthesized Au nanomaterials cannot always match stringent requirements for toxicity levels and surface conditioning. Laser-synthesized Au nanoparticles (AuNP) present a viable alternative to chemical counterparts and can offer exceptional purity (no trace of contaminants) and unusual surface chemistry making possible direct conjugation with biocompatible polymers (dextran, polyethylene glycol). This work presents the first pharmacokinetics, biodistribution and safety study of laser-ablated dextran-coated AuNP (AuNPd) under intravenous administration in small animal model. Our data show that AuNPd are rapidly eliminated from the blood circulation and accumulated preferentially in liver and spleen, without inducing liver or kidney toxicity, as confirmed by the plasmatic ALAT and ASAT activities, and creatininemia values. Despite certain residual accumulation in tissues, we did not detect any sign of histological damage or inflammation in tissues, while IL-6 level confirmed the absence of any chronic inflammation. The safety of AuNPd was confirmed by healthy behavior of animals and the absence of acute and chronic toxicities in liver, spleen and kidneys. Our results demonstrate that laser-synthesized AuNP are safe for biological systems, which promises their successful biomedical applications.


Assuntos
Ouro/efeitos adversos , Ouro/farmacocinética , Lasers , Nanopartículas Metálicas/química , Segurança , Animais , Peso Corporal/efeitos dos fármacos , Dextranos/química , Feminino , Ouro/química , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ratos , Distribuição Tecidual
5.
Bioorg Med Chem ; 27(10): 1942-1951, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30975504

RESUMO

Previously, we described alkoxyamines bearing a pyridine ring as new pro-drugs with low molecular weights and theranostic activity. Upon chemical stimulus, alkoxyamines undergo homolysis and release free radicals, which can, reportedly, enhance magnetic resonance imaging and trigger cancer cell death. In the present study, we describe the synthesis and the anti-cancer activity of sixteen novel alkoxyamines that contain an imidazole ring. Activation of the homolysis was conducted by protonation and/or methylation. These new molecules displayed cytotoxic activities towards human glioblastoma cell lines, including the U251-MG cells that are highly resistant to the conventional chemotherapeutic agent Temozolomide. We further showed that the biological activities of the alkoxyamines were not only related to their half-life times of homolysis. We lastly identified the alkoxyamine (RS/SR)-4a, with both a high antitumour activity and favourable logD7.4 and pKa values, which make it a robust candidate for blood-brain barrier penetrating therapeutics against brain neoplasia.


Assuntos
Aminas/química , Antineoplásicos/química , Imidazóis/química , Pró-Fármacos/química , Aminas/metabolismo , Aminas/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Carbono/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/metabolismo , Glioblastoma/patologia , Meia-Vida , Humanos , Nitrogênio/química , Oxigênio/química , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacologia , Estereoisomerismo
6.
Sci Rep ; 9(1): 1194, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718560

RESUMO

Exhibiting a red-shifted absorption/scattering feature compared to conventional plasmonic metals, titanium nitride nanoparticles (TiN NPs) look as very promising candidates for biomedical applications, but these applications are still underexplored despite the presence of extensive data for conventional plasmonic counterparts. Here, we report the fabrication of ultrapure, size-tunable TiN NPs by methods of femtosecond laser ablation in liquids and their biological testing. We show that TiN NPs demonstrate strong and broad plasmonic peak around 640-700 nm with a significant tail over 800 nm even for small NPs sizes (<7 nm). In vitro tests of laser-synthesized TiN NPs on cellular models evidence their low cytotoxicity and excellent cell uptake. We finally demonstrate a strong photothermal therapy effect on U87-MG cancer cell cultures using TiN NPs as sensitizers of local hyperthermia under near-infrared laser excitation. Based on absorption band in the region of relative tissue transparency and acceptable biocompatibility, laser-synthesized TiN NPs promise the advancement of biomedical modalities employing plasmonic effects, including absorption/scattering contrast imaging, photothermal therapy, photoacoustic imaging and SERS.

7.
Chemistry ; 25(41): 9586-9591, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-29952096

RESUMO

Self-assembly of a covalently-bound lipophilic drug to a dendronic scaffold for making organic nanoparticles is reported as a proof of concept in nanovectorization. A minimalist structural approach with a small PEG-dendron conjugated to paclitaxel (PTX), incorporating safe succinic and gallic acids, is efficient to provide the expected anticancer bioactivity, but also significantly retards and targets intracellular delivery of PTX in 2D and 3D lung cancer cell cultures. A branching effect of dendrons is crucial, when compared to linear PTX conjugates. Transmission electron microscopy (TEM) and dynamic light-scattering (DLS) studies indicate the formation of stable, low-disperse nanoparticles at 10-5 m in H2 0, which could also be responsible for the biological effects. An ultrasensitive LC-MS/MS method was used for the determination of intracellular PTX concentration over time, along with the survival rates of cancer cells. Similarly, cell survival assays were successfully correlated to a 3D cell culture with spheroids for mimicking tumors, when treated with PTX conjugates. Our work opens the way to a full evaluation program required for new chemical entities.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Preparações de Ação Retardada/química , Dendrímeros/química , Paclitaxel/administração & dosagem , Polietilenoglicóis/química , Células A549 , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Paclitaxel/química , Paclitaxel/farmacocinética , Paclitaxel/farmacologia
8.
Cell Death Dis ; 9(10): 984, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30250248

RESUMO

Glioblastoma (GBM) is characterized by highly aggressive growth and invasive behavior. Due to the highly lethal nature of GBM, new therapies are urgently needed and repositioning of existing drugs is a promising approach. We have previously shown the activity of Proscillaridin A (ProA), a cardiac glycoside inhibitor of the Na(+)/K(+) ATPase (NKA) pump, against proliferation and migration of GBM cell lines. ProA inhibited tumor growth in vivo and increased mice survival after orthotopic grafting of GBM cells. This study aims to decipher the mechanism of action of ProA in GBM tumor and stem-like cells. ProA displayed cytotoxic activity on tumor and stem-like cells grown in 2D and 3D culture, but not on healthy cells as astrocytes or oligodendrocytes. Even at sub-cytotoxic concentration, ProA impaired cell migration and disturbed EB1 accumulation at microtubule (MT) plus-ends and MT dynamics instability. ProA activates GSK3ß downstream of NKA inhibition, leading to EB1 phosphorylation on S155 and T166, EB1 comet length shortening and MT dynamics alteration, and finally inhibition of cell migration and cytotoxicity. Similar results were observed with digoxin. Therefore, we disclosed here a novel pathway by which ProA and digoxin modulate MT-governed functions in GBM tumor and stem-like cells. Altogether, our results support ProA and digoxin as potent candidates for drug repositioning in GBM.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Microtúbulos/metabolismo , Proscilaridina/farmacologia , Adenosina Trifosfatases/metabolismo , Animais , Astrócitos/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Bombas de Íon/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação/efeitos dos fármacos , Polimerização/efeitos dos fármacos , Tubulina (Proteína)/metabolismo
9.
Sci Rep ; 7: 45136, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28332584

RESUMO

Metabolic reprogramming is a hallmark of cancer development, mediated by genetic and epigenetic alterations that may be pharmacologically targeted. Among oncogenes, the kinase Akt is commonly overexpressed in tumors and favors glycolysis, providing a rationale for using Akt inhibitors. Here, we addressed the question of whether and how inhibiting Akt activity could improve therapy of non-small cell lung cancer (NSCLC) that represents more than 80% of all lung cancer cases. First, we demonstrated that Akt inhibitors interacted synergistically with Microtubule-Targeting Agents (MTAs) and specifically in cancer cell lines, including those resistant to chemotherapy agents and anti-EGFR targeted therapies. In vivo, we further revealed that the chronic administration of low-doses of paclitaxel - i.e. metronomic scheduling - and the anti-Akt perifosine was the most efficient and the best tolerated treatment against NSCLC. Regarding drug mechanism of action, perifosine potentiated the pro-apoptotic effects of paclitaxel, independently of cell cycle arrest, and combining paclitaxel/perifosine resulted in a sustained suppression of glycolytic and mitochondrial metabolism. This study points out that targeting cancer cell bioenergetics may represent a novel therapeutic avenue in NSCLC, and provides a strong foundation for future clinical trials of metronomic MTAs combined with Akt inhibitors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Metabolismo Energético/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Técnicas de Cultura de Células , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glicólise , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Camundongos , Mitocôndrias/metabolismo , Paclitaxel/farmacologia , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Mol Cancer Ther ; 15(11): 2740-2749, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27540016

RESUMO

Glioblastoma patients have limited treatment options. Cancer stem-like cells (CSLC) contribute to glioblastoma invasiveness and repopulation; hence, they represent promising targets for novel therapies. BAL101553 is a prodrug of BAL27862, a novel microtubule-destabilizing agent inhibiting tumor cell proliferation through activation of the spindle assembly checkpoint, which is currently in phase I/II clinical development. Broad anticancer activity has been demonstrated against human cancer models, including tumors refractory to conventional treatments. We have shown that overexpression of microtubule + end-binding 1-protein (EB1) correlates with glioblastoma progression and poor survival. Here, we show that BAL27862 inhibits the growth of two glioblastoma CSLCs. As EB1 is overexpressed in the CSLC line GBM6, which displays a high tumorigenicity and infiltrative pattern of migration in vivo, we investigated drug activity on GBM6 according to EB1 expression. BAL27862 inhibited migration and colony formation at subcytotoxic concentrations in EB1-expressing control cells (GBM6-sh0) but only at cytotoxic concentrations in EB1-downregulated (GBM-shE1) cells. Three administrations of BAL101553 were sufficient to provoke an EB1-dependent survival benefit in tumor-bearing mice. Patterns of invasion and quantification of tumor cells in brain demonstrated that GBM6-sh0 cells were more invasive than GBM6-shEB1 cells, and that the antiproliferative and anti-invasive effects of BAL101553 were more potent in mice bearing control tumors than in EB1-downregulated tumors. This was associated with inhibition of stem cell properties in the GBM6-sh0 model. Finally, BAL27862 triggered astrocytic differentiation of GBM6 in an EB1-dependent manner. These results support the potential of BAL101553 for glioblastoma treatment, with EB1 expression as a predictive biomarker of response. Mol Cancer Ther; 15(11); 2740-9. ©2016 AACR.


Assuntos
Benzimidazóis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Glioblastoma/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Oxidiazóis/farmacologia , Moduladores de Tubulina/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Diferenciação Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Expressão Gênica , Glioblastoma/genética , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Células-Tronco Neoplásicas/patologia
11.
Sci Rep ; 6: 25400, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27151839

RESUMO

Si/SiOx nanoparticles (NPs) produced by laser ablation in deionized water or aqueous biocompatible solutions present a novel extremely promising object for biomedical applications, but the interaction of these NPs with biological systems has not yet been systematically examined. Here, we present the first comprehensive study of biodistribution, biodegradability and toxicity of laser-synthesized Si-SiOx nanoparticles using a small animal model. Despite a relatively high dose of Si-NPs (20 mg/kg) administered intravenously in mice, all controlled parameters (serum, enzymatic, histological etc.) were found to be within safe limits 3 h, 24 h, 48 h and 7 days after the administration. We also determined that the nanoparticles are rapidly sequestered by the liver and spleen, then further biodegraded and directly eliminated in urine without any toxicity effects. Finally, we found that intracellular accumulation of Si-NPs does not induce any oxidative stress damage. Our results evidence a huge potential in using these safe and biodegradable NPs in biomedical applications, in particular as vectors, contrast agents and sensitizers in cancer therapy and diagnostics (theranostics).


Assuntos
Disponibilidade Biológica , Lasers , Nanoestruturas/administração & dosagem , Silício/administração & dosagem , Silício/farmacocinética , Oligoelementos/administração & dosagem , Oligoelementos/farmacocinética , Administração Intravenosa , Animais , Fígado/química , Camundongos , Nanomedicina/métodos , Nanoestruturas/efeitos adversos , Silício/efeitos adversos , Baço/química , Oligoelementos/efeitos adversos , Urina/química
12.
J Mater Chem B ; 4(48): 7852-7858, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-32263775

RESUMO

We employ a method of femtosecond laser fragmentation of preliminarily prepared water-dispersed microcolloids to fabricate aqueous solutions of ultrapure bare Si-based nanoparticles (Si-NPs) and assess their potential for biomedical applications. The nanoparticles appear spherical in shape, with low size dispersion and a controllable mean size, from a few nm to several tens of nm, while a negative surface charge (-35 mV ± 0.10 according to z-potential data) provides good electrostatic stabilization of colloidal Si-NP solutions. Structural analysis shows that the Si-NPs are composed of Si nanocrystals with inclusions of silicon oxide species, covered by a SiOx (1 < x < 2) shell, while the total oxide content depends on whether the fragmentation is performed in normal oxygen-saturated water (oxygen-rich conditions) or in water deoxygenated by pumping with noble gases (Ag or He) before and during the experiment (oxygen-free conditions). Our dissolution tests show the excellent water-solubility of all the NPs, while more oxidized NPs demonstrate much faster dissolution kinetics, which is explained by oxidation-induced defects in the core of the Si-NPs. Finally, by examining the interaction of the NPs with human cells after 72 h of incubation at different concentrations, we report the absence of any adverse effects of the NPs up to high concentrations (50 µg mL-1) and a good internalization of NPs via a classical endocytosis mechanism. Possessing far superior purity compared to their chemically synthesized counterparts and enabling a variety of imaging and therapeutic functionalities, the laser-synthesized Si-NPs are promising for safe and efficient applications in nanomedicine.

13.
Oncotarget ; 6(41): 43557-70, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26498358

RESUMO

The regulation of microtubule dynamics is critical to ensure essential cell functions. End binding protein 1 (EB1) is a master regulator of microtubule dynamics that autonomously binds an extended GTP/GDP-Pi structure at growing microtubule ends and recruits regulatory proteins at this location. However, negative regulation of EB1 association with growing microtubule ends remains poorly understood. We show here that microtubule-associated tumor suppressor ATIP3 interacts with EB1 through direct binding of a non-canonical proline-rich motif. Results indicate that ATIP3 does not localize at growing microtubule ends and that in situ ATIP3-EB1 molecular complexes are mostly detected in the cytosol. We present evidence that a minimal EB1-interacting sequence of ATIP3 is both necessary and sufficient to prevent EB1 accumulation at growing microtubule ends in living cells and that EB1-interaction is involved in reducing cell polarity. By fluorescence recovery of EB1-GFP after photobleaching, we show that ATIP3 silencing accelerates EB1 turnover at microtubule ends with no modification of EB1 diffusion in the cytosol. We propose a novel mechanism by which ATIP3-EB1 interaction indirectly reduces the kinetics of EB1 exchange on its recognition site, thereby accounting for negative regulation of microtubule dynamic instability. Our findings provide a unique example of decreased EB1 turnover at growing microtubule ends by cytosolic interaction with a tumor suppressor.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular , Polaridade Celular , Imunofluorescência , Humanos , Imunoprecipitação , Transfecção
14.
J Pharm Biomed Anal ; 115: 300-6, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26263058

RESUMO

The quantification of paclitaxel, a chemotherapy drug used to treat different types of cancers, has been performed from complete cell culture medium and cell lysate samples using a simple liquid-liquid extraction procedure in conjunction with liquid chromatography tandem mass spectrometry (LC-MS/MS). A simple sample preparation using methanol and acetic acid as a weaker acid was applied to avoid paclitaxel destruction and to achieve recovery exceeding 80 % from both matrices spiked with paclitaxel and docetaxel used as internal standard. This rapid, simple, selective and sensitive method enabled the quantification of paclitaxel within the linear range of 1-250nM in culture medium and 5-250nM in cell lysate. The lower limit of quantification was achieved in cell culture medium and cell lysates at 0.2 and 1pmol, respectively. This method was successfully applied to human non-small cell lung carcinoma cells (A549 cells) in order to quantify the amount of paclitaxel in both cell culture medium and lysate after incubation with 5, 50 and 100nM of paclitaxel. This ultra-sensitive method promises the quantification of ultra-low concentrations of paclitaxel released from any nanocarriers, allowing the determination of the kinetic profile of drug release, which is an essential parameter to validate the use of nanocarriers for drug delivery in cancer therapy.


Assuntos
Antineoplásicos Fitogênicos/análise , Cromatografia Líquida de Alta Pressão/métodos , Portadores de Fármacos/química , Extração Líquido-Líquido/métodos , Nanopartículas/química , Paclitaxel/análise , Espectrometria de Massas em Tandem/métodos , Calibragem , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Meios de Cultura/química , Liberação Controlada de Fármacos , Humanos , Limite de Detecção , Reprodutibilidade dos Testes
15.
Int J Nanomedicine ; 9: 5415-30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25473280

RESUMO

Due to excellent biocompatibility, chemical stability, and promising optical properties, gold nanoparticles (Au-NPs) are the focus of research and applications in nanomedicine. Au-NPs prepared by laser ablation in aqueous biocompatible solutions present an essentially novel object that is unique in avoiding any residual toxic contaminant. This paper is conceived as the next step in development of laser-ablated Au-NPs for future in vivo applications. The aim of the study was to assess the safety, uptake, and biological behavior of laser-synthesized Au-NPs prepared in water or polymer solutions in human cell lines. Our results showed that laser ablation allows the obtaining of stable and monodisperse Au-NPs in water, polyethylene glycol, and dextran solutions. The three types of Au-NPs were internalized in human cell lines, as shown by transmission electron microscopy. Biocompatibility and safety of Au-NPs were demonstrated by analyzing cell survival and cell morphology. Furthermore, incubation of the three Au-NPs in serum-containing culture medium modified their physicochemical characteristics, such as the size and the charge. The composition of the protein corona adsorbed on Au-NPs was investigated by mass spectrometry. Regarding composition of complement C3 proteins and apolipoproteins, Au-NPs prepared in dextran solution appeared as a promising drug carrier. Altogether, our results revealed the safety of laser-ablated Au-NPs in human cell lines and support their use for theranostic applications.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/toxicidade , Ouro/química , Ouro/toxicidade , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Materiais Biocompatíveis/farmacocinética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dextranos/química , Dextranos/farmacocinética , Dextranos/toxicidade , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/toxicidade , Ouro/farmacocinética , Química Verde , Humanos , Lasers , Nanomedicina/métodos , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/toxicidade , Proteínas , Água/química
16.
Oncotarget ; 5(24): 12769-87, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25473893

RESUMO

End-binding 1 protein (EB1) is a key player in the regulation of microtubule (MT) dynamics. Here, we investigated the role of EB1 in glioblastoma (GBM) tumor progression and its potential predictive role for response to Vinca-alkaloid chemotherapy. Immunohistological analysis of the 109 human GBM cases revealed that EB1 overexpression correlated with poor outcome including progression-free survival and overall survival. Downregulation of EB1 by shRNA inhibited cell migration and proliferation in vitro. Conversely, EB1 overexpression promoted them and accelerated tumor growth in orthotopically-transplanted nude mice. Furthermore, EB1 was largely overexpressed in stem-like GBM6 that display in vivo a higher tumorigenicity with a more infiltrative pattern of migration than stem-like GBM9. GBM6 showed strong and EB1-dependent migratory potential. The predictive role of EB1 in the response of GBM cells to chemotherapy was investigated. Vinflunine and vincristine increased survival of EB1-overexpressing U87 bearing mice and were more effective to inhibit cell migration and proliferation in EB1-overexpressing clones than in controls. Vinca inhibited the increase of MT growth rate and growth length induced by EB1 overexpression. Altogether, our results show that EB1 expression level has a prognostic value in GBM, and that Vinca-alkaloid chemotherapy could improve the treatment of GBM patients with EB1-overexpressing tumor.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Proteínas Associadas aos Microtúbulos/biossíntese , Alcaloides de Vinca/farmacologia , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Intervalo Livre de Doença , Feminino , Glioblastoma/patologia , Humanos , Técnicas In Vitro , Camundongos , Camundongos Nus , Proteínas Associadas aos Microtúbulos/genética , Vimblastina/análogos & derivados , Vimblastina/farmacologia , Vincristina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Oncotarget ; 5(10): 3408-23, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24930764

RESUMO

Microtubule-targeting agents (MTAs) are largely administered in adults and children cancers. Better deciphering their mechanism of action is of prime importance to develop more convenient therapy strategies. Here, we addressed the question of how reactive oxygen species (ROS) generation by mitochondria can be necessary for MTA efficacy. We showed for the first time that EB1 associates with microtubules in a phosphorylation-dependent manner, under control of ROS. By using phospho-defective mutants, we further characterized the Serine 155 residue as critical for EB1 accumulation at microtubule plus-ends, and both cancer cell migration and proliferation. Phosphorylation of EB1 on the Threonine 166 residue triggered opposite effects, and was identified as a requisite molecular switch in MTA activities. We then showed that GSK3ß activation was responsible for MTA-triggered EB1 phosphorylation, resulting from ROS-mediated inhibition of upstream Akt. We thus disclosed here a novel pathway by which generation of mitochondrial ROS modulates microtubule dynamics through phosphorylation of EB1, improving our fundamental knowledge about this oncogenic protein, and pointing out the need to re-examine the current dogma of microtubule targeting by MTAs. The present work also provides a strong mechanistic rational to the promising therapeutic strategies that currently combine MTAs with anti-Akt targeted therapies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia , Western Blotting , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Técnica Indireta de Fluorescência para Anticorpo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Imunoprecipitação , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Transfecção , Moduladores de Tubulina/farmacologia
18.
Biochim Biophys Acta ; 1838(8): 2087-98, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24796502

RESUMO

The peptide KLA (acetyl-(KLAKLAK)2-NH2), which is rather non toxic for eukaryotic cell lines, becomes active when coupled to the cell penetrating peptide, penetratin (Pen), by a disulfide bridge. Remarkably, the conjugate KLA-Pen is cytotoxic, at low micromolar concentrations, against a panel of seven human tumor cell lines of various tissue origins, including cells resistant to conventional chemotherapy agents but not to normal human cell lines. Live microscopy on cells possessing fluorescent labeled mitochondria shows that in tumor cells, KLA-Pen had a strong impact on mitochondria tubular organization instantly resulting in their aggregation, while the unconjugated KLA and pen peptides had no effect. But, mitochondria in various normal cells were not affected by KLA-Pen. The interaction with membrane models of KLA-Pen, KLA and penetratin were studied using dynamic light scattering, calorimetry, plasmon resonance, circular dichroism and ATR-FTIR to unveil the mode of action of the conjugate. To understand the selectivity of the conjugate towards tumor cell lines and its action on mitochondria, lipid model systems composed of zwitterionic lipids were used as mimics of normal cell membranes and anionic lipids as mimics of tumor cell and mitochondria membrane. A very distinct mode of interaction with the two model systems was observed. KLA-Pen may exert its deleterious and selective action on cancer cells by the formation of pores with an oblique membrane orientation and establishment of important hydrophobic interactions. These results suggest that KLA-Pen could be a lead compound for the design of cancer therapeutics.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Transporte/farmacologia , Mitocôndrias/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Neoplasias/patologia , Peptídeos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Varredura Diferencial de Calorimetria , Peptídeos Penetradores de Células , Dicroísmo Circular , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Lipossomos , Lipídeos de Membrana/metabolismo , Neoplasias/tratamento farmacológico , Peptídeos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Células Tumorais Cultivadas
19.
PLoS One ; 8(6): e65694, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23750272

RESUMO

We previously showed that vinflunine, a microtubule-targeting drug of the Vinca-alkaloid family exerted its anti-angiogenic/anti-migratory activities through an increase in microtubule dynamics and an inhibition of microtubule targeting to adhesion sites. Such effect was associated with a reduction of EB1 comet length at microtubule (+) ends. In this work we first showed that the pro-angiogenic vascular endothelial growth factor VEGF suppressed microtubule dynamics in living Human Umbilical Vein Endothelial Cells (HUVECs), increased EB1 comet length by 40%, and induced EB1 to bind all along the microtubules, without modifying its expression level. Such microtubule (+) end stabilization occurred close to the plasma membrane in the vicinity of focal adhesion as shown by TIRF microscopy experiments. Vinflunine completely abolished the effect of VEGF on EB1 comets. Interestingly, we found a correlation between the reduction of EB1 comet length by vinflunine and the inhibition of cell migration. By using 2D gel electrophoresis we demonstrated for the first time that EB1 underwent several post-translational modifications in endothelial and tumor cells. Particularly, the C-terminal EEY sequence was poorly detectable in control and VEGF-treated HUVECs suggesting the existence of a non-tyrosinated form of EB1. By using specific antibodies that specifically recognized and discriminated the native tyrosinated form of EB1 and a putative C-terminal detyrosinated form, we showed that a detyrosinated form of EB1 exists in HUVECs and tumor cells. Interestingly, vinflunine decreased the level of the detyrosinated form and increased the native tyrosinated form of EB1. Using 3-L-Nitrotyrosine incorporation experiments, we concluded that the EB1 C-terminal modifications result from a detyrosination/retyrosination cycle as described for tubulin. Altogether, our results show that vinflunine inhibits endothelial cell migration through an alteration of EB1 comet length and EB1 detyrosination/retyrosination cycle.


Assuntos
Movimento Celular/efeitos dos fármacos , Células Endoteliais/patologia , Glioblastoma/patologia , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Tirosina/metabolismo , Vimblastina/análogos & derivados , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Vimblastina/farmacologia
20.
Cancer Res ; 73(9): 2905-15, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23396587

RESUMO

Metastasis, a fatal complication of breast cancer, does not fully benefit from available therapies. In this study, we investigated whether ATIP3, the major product of 8p22 MTUS1 gene, may be a novel biomarker and therapeutic target for metastatic breast tumors. We show that ATIP3 is a prognostic marker for overall survival among patients with breast cancer. Notably, among metastatic tumors, low ATIP3 levels associate with decreased survival of the patients. By using a well-defined experimental mouse model of cancer metastasis, we show that ATIP3 expression delays the time-course of metastatic progression and limits the number and size of metastases in vivo. In functional studies, ATIP3 silencing increases breast cancer cell migration, whereas ATIP3 expression significantly reduces cell motility and directionality. We report here that ATIP3 is a potent microtubule-stabilizing protein whose depletion increases microtubule dynamics. Our data support the notion that by decreasing microtubule dynamics, ATIP3 controls the ability of microtubule tips to reach the cell cortex during migration, a mechanism that may account for reduced cancer cell motility and metastasis. Of interest, we identify a functional ATIP3 domain that associates with microtubules and recapitulates the effects of ATIP3 on microtubule dynamics, cell proliferation, and migration. Our study is a major step toward the development of new personalized treatments against metastatic breast tumors that have lost ATIP3 expression.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Neoplasias da Mama/patologia , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Camundongos , Microscopia de Fluorescência/métodos , Microtúbulos/metabolismo , Metástase Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Plasmídeos/metabolismo , Prognóstico , Estrutura Terciária de Proteína , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...