Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Plant Sci ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38521698

RESUMO

Strigolactones (SLs) act as regulators of plant architecture as well as signals in rhizospheric communications. Reduced availability of minerals, particularly phosphorus, leads to an increase in the formation and release of SLs that enable adaptation of root and shoot architecture to nutrient limitation and, simultaneously, attract arbuscular mycorrhizal fungi (AMF) for establishing beneficial symbiosis. Based on their chemical structure, SLs are designated as either canonical or non-canonical; however, the question of whether the two classes are also distinguished in their biological functions remained largely elusive until recently. In this review we summarize the latest advances in SL biosynthesis and highlight new findings pointing to rhizospheric signaling as the major function of canonical SLs.

2.
Plant J ; 118(4): 927-939, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38525669

RESUMO

Gibberellins (GAs) are major regulators of developmental and growth processes in plants. Using the degradation-based signaling mechanism of GAs, we have built transcriptional regulator (DELLA)-based, genetically encoded ratiometric biosensors as proxies for hormone quantification at high temporal resolution and sensitivity that allow dynamic, rapid and simple analysis in a plant cell system, i.e. Arabidopsis protoplasts. These ratiometric biosensors incorporate a DELLA protein as a degradation target fused to a firefly luciferase connected via a 2A peptide to a renilla luciferase as a co-expressed normalization element. We have implemented these biosensors for all five Arabidopsis DELLA proteins, GA-INSENSITIVE, GAI; REPRESSOR-of-ga1-3, RGA; RGA-like1, RGL1; RGL2 and RGL3, by applying a modular design. The sensors are highly sensitive (in the low pm range), specific and dynamic. As a proof of concept, we have tested the applicability in three domains: the study of substrate specificity and activity of putative GA-oxidases, the characterization of GA transporters, and the use as a discrimination platform coupled to a GA agonists' chemical screening. This work demonstrates the development of a genetically encoded quantitative biosensor complementary to existing tools that allow the visualization of GA in planta.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Técnicas Biossensoriais , Giberelinas , Protoplastos , Transdução de Sinais , Giberelinas/metabolismo , Técnicas Biossensoriais/métodos , Arabidopsis/metabolismo , Arabidopsis/genética , Protoplastos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
3.
Proc Natl Acad Sci U S A ; 120(42): e2306263120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37819983

RESUMO

Strigolactones (SLs) regulate many developmental processes, including shoot-branching/tillering, and mediate rhizospheric interactions. SLs originate from carlactone (CL) and are structurally diverse, divided into a canonical and a noncanonical subfamily. Rice contains two canonical SLs, 4-deoxyorobanchol (4DO) and orobanchol (Oro), which are common in different plant species. The cytochrome P450 OsMAX1-900 forms 4DO from CL through repeated oxygenation and ring closure, while the homologous enzyme OsMAX1-1400 hydroxylates 4DO into Oro. To better understand the biological function of 4DO and Oro, we generated CRISPR/Cas9 mutants disrupted in OsMAX1-1400 or in both OsMAX1-900 and OsMAX1-1400. The loss of OsMAX1-1400 activity led to a complete lack of Oro and an accumulation of its precursor 4DO. Moreover, Os1400 mutants showed shorter plant height, panicle and panicle base length, but no tillering phenotype. Hormone quantification and transcriptome analysis of Os1400 mutants revealed elevated auxin levels and changes in the expression of auxin-related, as well as of SL biosynthetic genes. Interestingly, the Os900/1400 double mutant lacking both Oro and 4DO did not show the observed Os1400 architectural phenotypes, indicating their being a result of 4DO accumulation. Treatment of wild-type plants with 4DO confirmed this assumption. A comparison of the Striga seed germinating activity and the mycorrhization of Os900, Os900/1400, and Os1400 loss-of-function mutants demonstrated that the germination activity positively correlates with 4DO content while disrupting OsMAX1-1400 has a negative impact on mycorrhizal symbiosis. Taken together, our paper deciphers the biological function of canonical SLs in rice and reveals their particular contributions to establishing architecture and rhizospheric communications.


Assuntos
Oryza , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Oryza/genética , Oryza/metabolismo , Plantas/metabolismo , Lactonas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Indolacéticos/metabolismo
4.
J Plant Physiol ; 287: 154057, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37531662

RESUMO

Strigolactones (SLs) inhibit shoot branching/tillering and are secreted by plant roots as a signal to attract symbiotic mycorrhizal fungi in the rhizosphere, particularly under phosphate starvation. However, SLs are also hijacked by root parasitic weeds as inducer for the germination of their seeds. There are around 35 natural SLs divided, based on their structures, into canonical and non-canonical SLs. Cytochrome P450 enzymes of the 711 clade, such as MORE AXILLARY GROWTH1 (MAX1) in Arabidopsis, are a major driver of SL structural diversity. Monocots, such as rice, contain several MAX1 homologs that participate in SL biosynthesis. To investigate the function of OsMAX1-1900 in planta, we generated CRISPR/Cas9 mutants disrupted in the corresponding gene. Characterizing of the generated mutants at metabolite and phenotype level suggests that OsMAX1-1900 loss-of-function does neither affect the SL pattern nor rice architecture, indicating functional redundancy among rice MAX1 homologs.


Assuntos
Arabidopsis , Oryza , Oryza/genética , Oryza/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/genética , Lactonas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo
5.
Plants (Basel) ; 12(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37299168

RESUMO

With increasing throughput in both the generation and phenotyping of mutant lines in plants, it is important to have an efficient and reliable genotyping method. Traditional workflows, still commonly used in many labs, have time-consuming and expensive steps, such as DNA purification, cloning and growing E. coli cultures. We propose an alternative workflow where these steps are bypassed, using Phire polymerase on fresh plant tissue, and ExoProStar treatment as preparation for sequencing. We generated CRISPR-Cas9 mutants for ZAS (ZAXINONE SYNTHASE) in rice with two guide RNAs. Using both a traditional workflow and our proposed workflow, we genotyped nine T1 plants. To interpret the sequencing output, which is often complex in CRISPR-generated mutants, we used free online automatic analysis systems and compared the results. Our proposed workflow produces results of the same quality as the old workflow, but in 1 day instead of 3 days and about 35 times cheaper. This workflow also consists of fewer steps and reduces the risk of cross contamination and mistakes. Furthermore, the automated sequence analysis packages are mostly accurate and could easily be used for bulk analysis. Based on these advantages, we encourage academic and commercial labs conducting genotyping to consider switching over to our proposed workflow.

6.
Plant Signal Behav ; 18(1): 2184127, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36855265

RESUMO

The cleavage of plant carotenoids leads to apocarotenoids, a group of metabolites including precursors of the hormones strigolactones (SLs) and abscisic acid, regulatory and signaling molecules. Zaxinone is a recently discovered apocarotenoid growth regulator that improves growth and suppress SL biosynthesis in rice (Oryza sativa). To test if zaxinone also counteracts the growth regulatory effects of SLs in rice, we co-supplied zaxinone and the synthetic SL analog rac-GR24 to the rice SL-deficient DWARF17 (d17) mutant. Results showed that co-application of GR24 and zaxinone still rescued d17 phenotype, indicating that zaxinone and GR24 act independently in regulating root and shoot growth and development in rice.


Assuntos
Oryza , Oryza/genética , Ácido Abscísico/farmacologia , Carotenoides , Lactonas/farmacologia
7.
Front Plant Sci ; 13: 1062107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507392

RESUMO

Strigolactones (SLs) are a plant hormone regulating different processes in plant development and adjusting plant's architecture to nutrition availability. Moreover, SLs are released by plants to communicate with beneficial fungi in the rhizosphere where they are, however, abused as chemical cues inducing seed germination of root parasitic weeds, e.g. Striga spp., and guiding them towards host plants in their vicinity. Based on their structure, SLs are divided into canonical and non-canonical SLs. In this perspective, we describe the metabolism of root-released SLs and SL pattern in rice max1-900 mutants, which are affected in the biosynthesis of canonical SLs, and show the accumulation of two putative non-canonical SLs, CL+30 and CL+14. Using max1-900 and SL-deficient d17 rice mutants, we further investigated the metabolism of non-canonical SLs and their possible biological roles. Our results show that the presence and further metabolism of canonical and non-canonical SLs are particularly important for their role in rhizospheric interactions, such as that with root parasitic plants. Hence, we proposed that the root-released SLs are mainly responsible for rhizospheric communications and have low impact on plant architecture, which makes targeted manipulation of root-released SLs an option for rhizospheric engineering.

8.
Sci Adv ; 8(44): eadd1278, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36322663

RESUMO

Strigolactones (SLs) are a plant hormone inhibiting shoot branching/tillering and a rhizospheric, chemical signal that triggers seed germination of the noxious root parasitic plant Striga and mediates symbiosis with beneficial arbuscular mycorrhizal fungi. Identifying specific roles of canonical and noncanonical SLs, the two SL subfamilies, is important for developing Striga-resistant cereals and for engineering plant architecture. Here, we report that rice mutants lacking canonical SLs do not show the shoot phenotypes known for SL-deficient plants, exhibiting only a delay in establishing arbuscular mycorrhizal symbiosis, but release exudates with a significantly decreased Striga seed-germinating activity. Blocking the biosynthesis of canonical SLs by TIS108, a specific enzyme inhibitor, significantly lowered Striga infestation without affecting rice growth. These results indicate that canonical SLs are not the determinant of shoot architecture and pave the way for increasing crop resistance by gene editing or chemical treatment.

9.
Planta ; 256(5): 88, 2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36152118

RESUMO

MAIN CONCLUSION: 13C-isotope feeding experiments demonstrate that the apocarotenoid 9-cis-ß-apo-10'-carotenal is the precursor of several strigolactones in rice, providing a direct, in planta evidence for its role in strigolactone biosynthesis. Strigolactones (SLs) are plant hormone that regulates plant architecture and mediates rhizospheric communications. Previous in vitro studies using heterogously produced enzymes unraveled the conversion of all-trans-ß-carotene via the intermediate 9-cis-ß-apo-10'-carotenal into the SL precursor carlactone. However, a direct evidence for the formation of SLs from 9-cis-ß-apo-10'-carotenal is still missing. To provide this evidence, we supplied rice seedlings with 13C-labeled 9-cis-ß-apo-10'-carotenal and analyzed their SLs by LC-MS. Our results show that 9-cis-ß-apo-10'-carotenal is the SL precursor in planta and reveal, for the first time, the application of labeled long-chain apocarotenoids as a promising approach to investigate apocarotenoid metabolism and the genesis of carotenoid-derived growth regulators and signaling molecules.


Assuntos
Oryza , beta Caroteno , Carotenoides/metabolismo , Compostos Heterocíclicos com 3 Anéis , Lactonas , Oryza/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , beta Caroteno/metabolismo
10.
STAR Protoc ; 3(2): 101352, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35620066

RESUMO

The plant hormone strigolactones (SLs) are secreted by plant roots to act as rhizospheric signals. Here, we present a protocol for characterizing plant-released SLs. We first outline all necessary steps required for collection, processing, and analysis of plant root exudates using the C18 column for SL extraction, followed by liquid chromatography-mass spectrometry (LC-MS) for SL quantification. We then describe image processing by SeedQuant, an open-source artificial-intelligence-based software, for measuring the biological activity of SLs in inducing root parasitic plant seed germination. For complete details on the use and execution of this protocol, please refer to Wang et al. (2019) and Braguy et al. (2021).


Assuntos
Lactonas , Raízes de Plantas , Cromatografia Líquida , Compostos Heterocíclicos com 3 Anéis/análise , Lactonas/análise , Raízes de Plantas/química , Plantas/química
11.
Methods Mol Biol ; 2309: 201-218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34028689

RESUMO

Understanding the biological background of strigolactone (SL) structural diversity and the SL signaling pathway at molecular level requires quantitative and sensitive tools that precisely determine SL dynamics. Such biosensors may be also very helpful in screening for SL analogs and mimics with defined biological functions.Recently, the genetically encoded, ratiometric sensor StrigoQuant was developed and allowed the quantification of the activity of a wide concentration range of SLs. StrigoQuant can be used for studies on the biosynthesis, function and signal transduction of this hormone class.Here, we provide a comprehensive protocol for establishing the use of StrigoQuant in Arabidopsis protoplasts. We first describe the generation and transformation of the protoplasts with StrigoQuant and detail the application of the synthetic SL analogue GR24. We then show the recording of the luminescence signal and how the obtained data are processed and used to assess/determine SL perception.


Assuntos
Arabidopsis/metabolismo , Bioensaio , Técnicas Biossensoriais , Compostos Heterocíclicos com 3 Anéis/metabolismo , Lactonas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Protoplastos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Luciferases de Renilla/genética , Luciferases de Renilla/metabolismo , Medições Luminescentes , Plantas Geneticamente Modificadas/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais
12.
Plant Physiol ; 186(3): 1632-1644, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33856485

RESUMO

Witchweeds (Striga spp.) and broomrapes (Orobanchaceae and Phelipanche spp.) are root parasitic plants that infest many crops in warm and temperate zones, causing enormous yield losses and endangering global food security. Seeds of these obligate parasites require rhizospheric, host-released stimulants to germinate, which opens up possibilities for controlling them by applying specific germination inhibitors or synthetic stimulants that induce lethal germination in the host's absence. To determine their effect on germination, root exudates or synthetic stimulants/inhibitors are usually applied to parasitic seeds in in vitro bioassays, followed by assessment of germination ratios. Although these protocols are very sensitive, the germination recording process is laborious, representing a challenge for researchers and impeding high-throughput screens. Here, we developed an automatic seed census tool to count and discriminate germinated seeds (GS) from non-GS. We combined deep learning, a powerful data-driven framework that can accelerate the procedure and increase its accuracy, for object detection with computer vision latest development based on the Faster Region-based Convolutional Neural Network algorithm. Our method showed an accuracy of 94% in counting seeds of Striga hermonthica and reduced the required time from approximately 5 min to 5 s per image. Our proposed software, SeedQuant, will be of great help for seed germination bioassays and enable high-throughput screening for germination stimulants/inhibitors. SeedQuant is an open-source software that can be further trained to count different types of seeds for research purposes.


Assuntos
Germinação/efeitos dos fármacos , Orobanchaceae/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/parasitologia , Plantas Daninhas/crescimento & desenvolvimento , Software , Sorghum/parasitologia , Striga/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/parasitologia , Tomada de Decisões Assistida por Computador , Aprendizado Profundo
13.
Front Plant Sci ; 10: 1168, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31611895

RESUMO

Carotenoids are isoprenoid pigments synthesized by all photosynthetic organisms and many heterotrophic microorganisms. They are equipped with a conjugated double-bond system that builds the basis for their role in harvesting light energy and in protecting the cell from photo-oxidation. In addition, the carotenoids polyene makes them susceptible to oxidative cleavage, yielding carbonyl products called apocarotenoids. This oxidation can be catalyzed by carotenoid cleavage dioxygenases or triggered nonenzymatically by reactive oxygen species. The group of plant apocarotenoids includes important phytohormones, such as abscisic acid and strigolactones, and signaling molecules, such as ß-cyclocitral. Abscisic acid is a key regulator of plant's response to abiotic stress and is involved in different developmental processes, such as seed dormancy. Strigolactone is a main regulator of plant architecture and an important signaling molecule in the plant-rhizosphere communication. ß-Cyclocitral, a volatile derived from ß-carotene oxidation, mediates the response of cells to singlet oxygen stress. Besides these well-known examples, recent research unraveled novel apocarotenoid growth regulators and suggests the presence of yet unidentified ones. In this review, we describe the biosynthesis and biological functions of established regulatory apocarotenoids and touch on the recently identified anchorene and zaxinone, with emphasis on their role in plant growth, development, and stress response.

14.
Plant J ; 87(1): 118-38, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27227549

RESUMO

Plants deploy a wide array of signalling networks integrating environmental cues with growth, defence and developmental responses. The high level of complexity, redundancy and connection between several pathways hampers a comprehensive understanding of involved functional and regulatory mechanisms. The implementation of synthetic biology approaches is revolutionizing experimental biology in prokaryotes, yeasts and animal systems and can likewise contribute to a new era in plant biology. This review gives an overview on synthetic biology approaches for the development and implementation of synthetic molecular tools and techniques to interrogate, understand and control signalling events in plants, ranging from strategies for the targeted manipulation of plant genomes up to the spatiotemporally resolved control of gene expression using optogenetic approaches. We also describe strategies based on the partial reconstruction of signalling pathways in orthogonal platforms, like yeast, animal and in vitro systems. This allows a targeted analysis of individual signalling hubs devoid of interconnectivity with endogenous interacting components. Implementation of the interdisciplinary synthetic biology tools and strategies is not exempt of challenges and hardships but simultaneously most rewarding in terms of the advances in basic and applied research. As witnessed in other areas, these original theoretical-experimental avenues will lead to a breakthrough in the ability to study and comprehend plant signalling networks.


Assuntos
Plantas/metabolismo , Biologia Sintética/métodos , Biotecnologia , Optogenética/métodos , Plantas/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...