Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Artigo em Inglês | MEDLINE | ID: mdl-38842977

RESUMO

BACKGROUND: New-onset atrial fibrillation (NOAF) occurs in 5% to 15% of patients who undergo transfemoral transcatheter aortic valve replacement (TAVR). Cardiac imaging has been underutilized to predict NOAF following TAVR. OBJECTIVES: The objective of this analysis was to compare and assess standard, manual echocardiographic and cardiac computed tomography (cCT) measurements as well as machine learning-derived cCT measurements of left atrial volume index and epicardial adipose tissue as risk factors for NOAF following TAVR. METHODS: The study included 1,385 patients undergoing elective, transfemoral TAVR for severe, symptomatic aortic stenosis. Each patient had standard and machine learning-derived measurements of left atrial volume and epicardial adipose tissue from cardiac computed tomography. The outcome of interest was NOAF within 30 days following TAVR. We used a 2-step statistical model including random forest for variable importance ranking, followed by multivariable logistic regression for predictors of highest importance. Model discrimination was assessed by using the C-statistic to compare the performance of the models with and without imaging. RESULTS: Forty-seven (5.0%) of 935 patients without pre-existing atrial fibrillation (AF) experienced NOAF. Patients with pre-existing AF had the largest left atrial volume index at 76.3 ± 28.6 cm3/m2 followed by NOAF at 68.1 ± 26.6 cm3/m2 and then no AF at 57.0 ± 21.7 cm3/m2 (P < 0.001). Multivariable regression identified the following risk factors in association with NOAF: left atrial volume index ≥76 cm2 (OR: 2.538 [95% CI: 1.165-5.531]; P = 0.0191), body mass index <22 kg/m2 (OR: 4.064 [95% CI: 1.500-11.008]; P = 0.0058), EATv (OR: 1.007 [95% CI: 1.000-1.014]; P = 0.043), aortic annulus area ≥659 mm2 (OR: 6.621 [95% CI: 1.849-23.708]; P = 0.004), and sinotubular junction diameter ≥35 mm (OR: 3.891 [95% CI: 1.040-14.552]; P = 0.0435). The C-statistic of the model was 0.737, compared with 0.646 in a model that excluded imaging variables. CONCLUSIONS: Underlying cardiac structural differences derived from cardiac imaging may be useful in predicting NOAF following transfemoral TAVR, independent of other clinical risk factors.

3.
Heart Rhythm ; 21(4): 471-483, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38101500

RESUMO

Catheter ablation of atrial fibrillation (AF) is an established therapy that reduces AF burden, improves quality of life, and reduces the risks of cardiovascular outcomes. Although there are clear guidelines for the application of de novo catheter ablation, there is less evidence to guide recommendations for repeat catheter ablation in patients who experience recurrent AF. In this review, we examine the rationale for repeat ablation, mechanisms of recurrence, patient selection, optimal timing, and procedural strategies. We discuss additional important considerations, including treatment of comorbidities and risk factors, risk of complications, and effectiveness. Mechanisms of recurrent AF are often due to non-pulmonary vein (non-PV) triggers; however, there is insufficient evidence supporting the routine use of empiric lesion sets during repeat ablation. The emergence of pulsed field ablation may alter the safety and effectiveness of de novo and repeat ablation. Extrapolation of data from randomized trials of de novo ablation does not optimally inform efficacy in cases of redo ablation. Additional large, randomized controlled trials are needed to address important clinical questions regarding procedural strategies and timing of repeat ablation.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Humanos , Qualidade de Vida , Resultado do Tratamento , Veias Pulmonares/cirurgia , Ablação por Cateter/efeitos adversos , Recidiva
4.
J Arrhythm ; 39(6): 868-875, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045451

RESUMO

Background: Traditional risk scores for recurrent atrial fibrillation (AF) following catheter ablation utilize readily available clinical and echocardiographic variables and yet have limited discriminatory capacity. Use of data from cardiac imaging and deep learning may help improve accuracy and prediction of recurrent AF after ablation. Methods: We evaluated patients with symptomatic, drug-refractory AF undergoing catheter ablation. All patients underwent pre-ablation cardiac computed tomography (cCT). LAVi was computed using a deep-learning algorithm. In a two-step analysis, random survival forest (RSF) was used to generate prognostic models with variables of highest importance, followed by Cox proportional hazard regression analysis of the selected variables. Events of interest included early and late recurrence. Results: Among 653 patients undergoing AF ablation, the most important factors associated with late recurrence by RSF analysis at 24 (+/-18) months follow-up included LAVi and early recurrence. In total, 5 covariates were identified as independent predictors of late recurrence: LAVi (HR per mL/m2 1.01 [1.01-1.02]; p < .001), early recurrence (HR 2.42 [1.90-3.09]; p < .001), statin use (HR 1.38 [1.09-1.75]; p = .007), beta-blocker use (HR 1.29 [1.01-1.65]; p = .043), and adjunctive cavotricuspid isthmus ablation [HR 0.74 (0.57-0.96); p = .02]. Survival analysis demonstrated that patients with both LAVi >66.7 mL/m2 and early recurrence had the highest risk of late recurrence risk compared with those with LAVi <66.7 mL/m2 and no early recurrence (HR 4.52 [3.36-6.08], p < .001). Conclusions: Machine learning-derived, full volumetric LAVi from cCT is the most important pre-procedural risk factor for late AF recurrence following catheter ablation. The combination of increased LAVi and early recurrence confers more than a four-fold increased risk of late recurrence.

6.
Nat Genet ; 54(8): 1103-1116, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35835913

RESUMO

The chr12q24.13 locus encoding OAS1-OAS3 antiviral proteins has been associated with coronavirus disease 2019 (COVID-19) susceptibility. Here, we report genetic, functional and clinical insights into this locus in relation to COVID-19 severity. In our analysis of patients of European (n = 2,249) and African (n = 835) ancestries with hospitalized versus nonhospitalized COVID-19, the risk of hospitalized disease was associated with a common OAS1 haplotype, which was also associated with reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) clearance in a clinical trial with pegIFN-λ1. Bioinformatic analyses and in vitro studies reveal the functional contribution of two associated OAS1 exonic variants comprising the risk haplotype. Derived human-specific alleles rs10774671-A and rs1131454 -A decrease OAS1 protein abundance through allele-specific regulation of splicing and nonsense-mediated decay (NMD). We conclude that decreased OAS1 expression due to a common haplotype contributes to COVID-19 severity. Our results provide insight into molecular mechanisms through which early treatment with interferons could accelerate SARS-CoV-2 clearance and mitigate against severe COVID-19.


Assuntos
COVID-19 , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Alelos , COVID-19/genética , Hospitalização , Humanos , SARS-CoV-2/genética
7.
Front Cardiovasc Med ; 9: 822269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35155637

RESUMO

OBJECTIVES: Cardiac computed tomography (CCT) is a common pre-operative imaging modality to evaluate pulmonary vein anatomy and left atrial appendage thrombus in patients undergoing catheter ablation (CA) for atrial fibrillation (AF). These images also allow for full volumetric left atrium (LA) measurement for recurrence risk stratification, as larger LA volume (LAV) is associated with higher recurrence rates. Our objective is to apply deep learning (DL) techniques to fully automate the computation of LAV and assess the quality of the computed LAV values. METHODS: Using a dataset of 85,477 CCT images from 337 patients, we proposed a framework that consists of several processes that perform a combination of tasks including the selection of images with LA from all other images using a ResNet50 classification model, the segmentation of images with LA using a UNet image segmentation model, the assessment of the quality of the image segmentation task, the estimation of LAV, and quality control (QC) assessment. RESULTS: Overall, the proposed LAV estimation framework achieved accuracies of 98% (precision, recall, and F1 score metrics) in the image classification task, 88.5% (mean dice score) in the image segmentation task, 82% (mean dice score) in the segmentation quality prediction task, and R 2 (the coefficient of determination) value of 0.968 in the volume estimation task. It correctly identified 9 out of 10 poor LAV estimations from a total of 337 patients as poor-quality estimates. CONCLUSIONS: We proposed a generalizable framework that consists of DL models and computational methods for LAV estimation. The framework provides an efficient and robust strategy for QC assessment of the accuracy for DL-based image segmentation and volume estimation tasks, allowing high-throughput extraction of reproducible LAV measurements to be possible.

8.
G3 (Bethesda) ; 7(2): 437-448, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-27913635

RESUMO

A GFP expression screen has been conducted on >1000 Janelia FlyLight Project enhancer-Gal4 lines to identify transcriptional enhancers active in the larval hematopoietic system. A total of 190 enhancers associated with 87 distinct genes showed activity in cells of the third instar larval lymph gland and hemolymph. That is, gene enhancers were active in cells of the lymph gland posterior signaling center (PSC), medullary zone (MZ), and/or cortical zone (CZ), while certain of the transcriptional control regions were active in circulating hemocytes. Phenotypic analyses were undertaken on 81 of these hematopoietic-expressed genes, with nine genes characterized in detail as to gain- and loss-of-function phenotypes in larval hematopoietic tissues and blood cells. These studies demonstrated the functional requirement of the cut gene for proper PSC niche formation, the hairy, Btk29A, and E2F1 genes for blood cell progenitor production in the MZ domain, and the longitudinals lacking, dFOXO, kayak, cap-n-collar, and delilah genes for lamellocyte induction and/or differentiation in response to parasitic wasp challenge and infestation of larvae. Together, these findings contribute substantial information to our knowledge of genes expressed during the larval stage of Drosophila hematopoiesis and newly identify multiple genes required for this developmental process.


Assuntos
Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Hematopoese/genética , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Diferenciação Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/parasitologia , Fator de Transcrição E2F1/genética , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/metabolismo , Hemócitos/metabolismo , Larva/genética , Larva/parasitologia , Proteínas Tirosina Quinases/genética , Transdução de Sinais/genética , Vespas/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...