Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39005264

RESUMO

The mechanism by which chondrocytes respond to reduced mechanical loading environments and the subsequent risk of developing osteoarthritis remains unclear. This is of particular concern for astronauts. In space the reduced joint loading forces during prolonged microgravity (10 -6 g ) exposure could lead to osteoarthritis (OA), compromising quality of life post-spaceflight. In this study, we encapsulated human chondrocytes in an agarose gel of similar stiffness to the pericellular matrix to mimic the cartilage microenvironment. We then exposed agarose-chondrocyte constructs to simulated microgravity (SM) using a rotating wall vessel (RWV) bioreactor to better assess the cartilage health risks associated with spaceflight. Global metabolomic profiling detected a total of 1205 metabolite features across all samples, with 497 significant metabolite features identified by ANOVA (FDR-corrected p-value < 0.05). Specific metabolic shifts detected in response to SM exposure resulted in clusters of co-regulated metabolites, as well as key metabolites identified by variable importance in projection scores. Microgravity-induced metabolic shifts in gel constructs and media were indicative of protein synthesis, energy metabolism, nucleotide metabolism, and oxidative catabolism. The microgravity associated-metabolic shifts were consistent with early osteoarthritic metabolomic profiles in human synovial fluid, which suggests that even short-term exposure to microgravity (or other reduced mechanical loading environments) may lead to the development of OA.

2.
J Orthop Res ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923623

RESUMO

Posttraumatic osteoarthritis (PTOA) commonly develops following anterior cruciate ligament (ACL) injuries, affecting around 50% of individuals within 10-20 years. Recent studies have highlighted early changes in subchondral bone structure after ACL injury in adolescent or young adult mice, which could contribute to the development of PTOA. However, ACL injuries do not only occur early in life. Middle-aged and older patients also experience ACL injuries and PTOA, but whether the aged subchondral bone also responds rapidly to injury is unknown. This study utilized a noninvasive, single overload mouse injury model to assess subchondral bone microarchitecture, turnover, and material properties in both young adults (5 months) and early old age (22 months) female C57BL/6JN mice at 7 days after injury. Mice underwent either joint injury (i.e., produces ACL tears) or sham injury procedures on both the loaded and contralateral limbs, allowing evaluation of the impacts of injury versus loading. The subchondral bone response to ACL injury is distinct for young adult and aged mice. While 5-month mice show subchondral bone loss and increased bone resorption postinjury, 22-month mice did not show loss of bone structure and had lower bone resorption. Subchondral bone plate modulus increased with age, but not with injury. Both ages of mice showed several bone measures were altered in the contralateral limb, demonstrating the systemic skeletal response to joint injury. These data motivate further investigation to discern how osteochondral tissues differently respond to injury in aging, such that diagnostics and treatments can be refined for these demographics.

3.
bioRxiv ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38915493

RESUMO

Articular chondrocytes synthesize and maintain the avascular and aneural articular cartilage. In vivo these cells are surrounded by a 3D pericellular matrix (PCM) containing predominantly collagen VI. The PCM protects chondrocytes and facilitates mechanotransduction, and PCM stiffness is critical in transmitting biomechanical signals to chondrocytes. Various culture systems with different hydrogels have been used to encapsulate chondrocytes for 3D culture, but many lack either the PCM or the in vivo stiffness of the cartilage matrix. Here, we demonstrate that primary chondrocytes cultured in alginate will form a pericellular matrix and display a phenotype similar to in vivo conditions. We found that primary human and bovine chondrocytes, when cultured in alginate beads with addition of sodium L-ascorbate for 7 days, had a pronounced PCM, retained their phenotype, and synthesized both collagens VI and II. This novel culture system enables alginate-encapsulated chondrocytes to develop a robust PCM thereby creating a model system to study mechanotransduction. We also observed distinct compression-induced changes in metabolomic profiles between the monolayer-agarose and alginate-released agarose-embedded chondrocytes indicating physiological changes in cell metabolism. Our data suggest that 3D preculture of chondrocytes in alginate before encapsulation in physiologically-stiff agarose leads to a pronounced development of pericellular matrix that is sustained in the presence of ascorbate. This novel model can be useful in studying the mechanism by which chondrocytes respond to cyclical compression and other types of loading simulating in vivo physiological conditions.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38703811

RESUMO

OBJECTIVE: Sufficient evidence within the past two decades have shown that osteoarthritis (OA) has a sex-specific component. However, efforts to reveal the biological causes of this disparity have emerged more gradually. In this narrative review, we discuss anatomical differences within the knee, incidence of injuries in youth sports, and metabolic factors that present early in life (childhood and early adulthood) that can contribute to a higher risk of OA in females. DESIGN: We compiled clinical data from multiple tissues within the knee joint-since OA is a whole joint disorder-aiming to reveal relevant factors behind the sex differences from different perspectives. RESULTS: The data gathered in this review indicate that sex differences in articular cartilage, meniscus, and anterior cruciate ligament are detected as early as childhood and are not only explained by sex hormones. Aiming to unveil the biological causes of the uneven sex-specific risks for knee OA, we review the current knowledge of sex differences mostly in young, but also including old populations, from the perspective of (i) human anatomy in both healthy and pathological conditions, (ii) physical activity and response to injury, and (iii) metabolic signatures. CONCLUSIONS: We propose that to close the gap in health disparities, and specifically regarding OA, we should address sex-specific anatomic, biologic, and metabolic factors at early stages in life, as a way to prevent the higher severity and incidence of OA in women later in life.

5.
Metabolites ; 14(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38668311

RESUMO

Osteoarthritis (OA) is a chronic joint disease with heterogenous metabolic pathology. To gain insight into OA-related metabolism, metabolite extracts from healthy (n = 11) and end-stage osteoarthritic cartilage (n = 35) were analyzed using liquid chromatography-mass spectrometry metabolomic profiling. Specific metabolites and metabolic pathways, including lipid and amino acid pathways, were differentially regulated in osteoarthritis-derived and healthy cartilage. The detected alterations in amino acids and lipids highlighted key differences in bioenergetic resources, matrix homeostasis, and mitochondrial alterations in OA-derived cartilage compared to healthy cartilage. Moreover, the metabolomic profiles of osteoarthritic cartilage separated into four distinct endotypes, highlighting the heterogenous nature of OA metabolism and the diverse landscape within the joint in patients. The results of this study demonstrate that human cartilage has distinct metabolomic profiles in healthy and end-stage OA patients. By taking a comprehensive approach to assess metabolic differences between healthy and osteoarthritic cartilage and within osteoarthritic cartilage alone, several metabolic pathways with distinct regulation patterns were detected. Additional investigation may lead to the identification of metabolites that may serve as valuable indicators of disease status or potential therapeutic targets.

6.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38328065

RESUMO

Objective: Osteoarthritis (OA) is a chronic joint disease with heterogenous metabolic pathology. To gain insight into OA-related metabolism, healthy and end-stage osteoarthritic cartilage were compared metabolically to uncover disease-associated profiles, classify OA-specific metabolic endotypes, and identify targets for intervention for the diverse populations of individuals affected by OA. Design: Femoral head cartilage (n=35) from osteoarthritis patients were collected post-total joint arthroplasty. Healthy cartilage (n=11) was obtained from a tissue bank. Metabolites from all cartilage samples were extracted and analyzed using liquid chromatography-mass spectrometry metabolomic profiling. Additionally, cartilage extracts were pooled and underwent fragmentation analysis for biochemical identification of metabolites. Results: Specific metabolites and metabolic pathways, including lipid- and amino acid pathways, were differentially regulated between osteoarthritis-derived and healthy cartilage. The detected alterations of amino acids and lipids highlight key differences in bioenergetic resources, matrix homeostasis, and mitochondrial alterations in osteoarthritis-derived cartilage compared to healthy. Moreover, metabolomic profiles of osteoarthritic cartilage separated into four distinct endotypes highlighting the heterogenous nature of OA metabolism and diverse landscape within the joint between patients. Conclusions: The results of this study demonstrate that human cartilage has distinct metabolomic profiles between healthy and end-stage osteoarthritis patients. By taking a comprehensive approach to assess metabolic differences between healthy and osteoarthritic cartilage, and within osteoarthritic cartilage alone, several metabolic pathways with distinct regulation patterns were detected. Additional investigation may lead to the identification of metabolites that may serve as valuable indicators of disease status or potential therapeutic targets.

7.
Adv Biol (Weinh) ; 8(1): e2300268, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37688354

RESUMO

One of the main components of articular cartilage is the chondrocyte's pericellular matrix (PCM), which is critical for regulating mechanotransduction, biochemical cues, and healthy cartilage development. Here, individual primary human chondrocytes (PHC) are encapsulated and cultured in 50 µm diameter alginate microgels using drop-based microfluidics. This unique culturing method enables PCM formation and manipulation of individual cells. Over ten days, matrix formation is observed using autofluorescence imaging, and the elastic moduli of isolated cells are measured using AFM. Matrix production and elastic modulus increase are observed for the chondrons cultured in microgels. Furthermore, the elastic modulus of cells grown in microgels increases ≈ten-fold over ten days, nearly reaching the elastic modulus of in vivo PCM. The AFM data is further analyzed using a Gaussian mixture model and shows that the population of PHCs grown in microgels exhibit two distinct populations with elastic moduli averaging 9.0 and 38.0 kPa. Overall, this work shows that microgels provide an excellent culture platform for the growth and isolation of PHCs, enabling PCM formation that is mechanically similar to native PCM. The microgel culture platform presented here has the potential to revolutionize cartilage regeneration procedures through the inclusion of in vitro developed PCM.


Assuntos
Cartilagem Articular , Microgéis , Humanos , Condrócitos/fisiologia , Microscopia de Força Atômica , Matriz Extracelular/fisiologia , Mecanotransdução Celular , Cartilagem Articular/fisiologia
8.
Methods Mol Biol ; 2598: 141-156, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36355290

RESUMO

Metabolism has long been recognized as a critical physiological process necessary to maintain homeostasis in all types of cells including the chondrocytes of articular cartilage. Alterations in metabolism in disease and metabolic adaptation to physiological stimuli such as mechanical loading are increasingly recognized as important for understanding musculoskeletal systems such as synovial joints. Metabolomics is an emerging technique that allows quantitative measurement of thousands of small molecule metabolites that serve as both products and reactants to myriad reactions of cellular biochemistry. This protocol describes procedures to perform metabolomic profiling on chondrocytes and other tissues and fluids within the synovial joint.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Condrócitos/metabolismo , Osteoartrite/metabolismo , Cartilagem Articular/metabolismo , Metabolômica , Homeostase
9.
J Orthop Res ; 40(12): 2792-2802, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35285551

RESUMO

Osteoarthritis occurs frequently after joint injury. Currently, osteoarthritis is diagnosed by radiographic changes that are typically found after the disease has progressed to multiple tissues. The primary objective was to compare potential metabolomic biomarkers of joint injury between synovial fluid and serum in a mouse model of posttraumatic osteoarthritis. The secondary objective was to gain insight into the pathophysiology of osteoarthritis by examining metabolomic profiles after joint injury. Twelve-week-old adult female C57BL/6 mice (n = 12) were randomly assigned to control, Day 1, or Day 8 postinjury groups. Randomly selected stifle joints were subjected to a single rapid compression. At Days 1 and 8 postinjury, serum was extracted before mice were euthanized for synovial fluid collection. Metabolomic profiling detected ~2500 metabolites across serum and synovial fluid. Of these, 179 were positively correlated and 51 were negatively correlated between synovial fluid and serum, indicating the potential for the development of metabolomic biomarkers. Synovial fluid captured injury-induced differences in metabolomic profiles at both Days 1 and 8 after injury whereas serum did not. However, synovial fluid and serum were distinct at both time points after injury. In synovial fluid, pathways of interest mapped to amino acid synthesis and degradation, bupropion degradation, and transfer RNA (tRNA) charging. In serum, pathways were amino acid synthesis and degradation, the phospholipase pathway, and nicotine degradation. These results provide a rich picture of the injury response at early time points after joint injury. Furthermore, the correlations between synovial fluid and serum metabolites suggest the potential to gain insight into intra-articular pathophysiology through analysis of serum metabolites.


Assuntos
Artropatias , Osteoartrite , Animais , Feminino , Camundongos , Aminoácidos/análise , Aminoácidos/metabolismo , Biomarcadores/metabolismo , Artropatias/metabolismo , Camundongos Endogâmicos C57BL , Osteoartrite/metabolismo , Líquido Sinovial/metabolismo
10.
Cells ; 11(5)2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35269522

RESUMO

Articular cartilage is comprised of two main components, the extracellular matrix (ECM) and the pericellular matrix (PCM). The PCM helps to protect chondrocytes in the cartilage from mechanical loads, but in patients with osteoarthritis, the PCM is weakened, resulting in increased chondrocyte stress. As chondrocytes are responsible for matrix synthesis and maintenance, it is important to understand how mechanical loads affect the cellular responses of chondrocytes. Many studies have examined chondrocyte responses to in vitro mechanical loading by embedding chondrocytes in 3-D hydrogels. However, these experiments are mostly performed in the absence of PCM, which may obscure important responses to mechanotransduction. Here, drop-based microfluidics is used to culture single chondrocytes in alginate microgels for cell-directed PCM synthesis that closely mimics the in vivo microenvironment. Chondrocytes formed PCM over 10 days in these single-cell 3-D microenvironments. Mechanotransduction studies were performed, in which single-cell microgels mimicking the cartilage PCM were embedded in high-stiffness agarose. After physiological dynamic compression in a custom-built bioreactor, microgels exhibited distinct metabolomic profiles from both uncompressed and monolayer controls. These results demonstrate the potential of single cell encapsulation in alginate microgels to advance cartilage tissue engineering and basic chondrocyte mechanobiology.


Assuntos
Cartilagem Articular , Microgéis , Alginatos , Condrócitos , Humanos , Mecanotransdução Celular/fisiologia
11.
Cell Metab ; 19(3): 498-511, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24561261

RESUMO

Pancreatic islet endocrine cell and endothelial cell (EC) interactions mediated by vascular endothelial growth factor-A (VEGF-A) signaling are important for islet differentiation and the formation of highly vascularized islets. To dissect how VEGF-A signaling modulates intra-islet vasculature, islet microenvironment, and ß cell mass, we transiently increased VEGF-A production by ß cells. VEGF-A induction dramatically increased the number of intra-islet ECs but led to ß cell loss. After withdrawal of the VEGF-A stimulus, ß cell mass, function, and islet structure normalized as a result of a robust, but transient, burst in proliferation of pre-existing ß cells. Bone marrow-derived macrophages (MΦs) recruited to the site of ß cell injury were crucial for the ß cell proliferation, which was independent of pancreatic location and circulating factors such as glucose. Identification of the signals responsible for the proliferation of adult, terminally differentiated ß cells will improve strategies aimed at ß cell regeneration and expansion.


Assuntos
Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/fisiologia , Regeneração , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Transplante das Ilhotas Pancreáticas , Antígenos Comuns de Leucócito/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/transplante , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética
12.
Dev Biol ; 367(1): 40-54, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22546694

RESUMO

There is a reciprocal interaction between pancreatic islet cells and vascular endothelial cells (EC) in which EC-derived signals promote islet cell differentiation and islet development while islet cell-derived angiogenic factors promote EC recruitment and extensive islet vascularization. To examine the role of angiogenic factors in the coordinated development of islets and their associated vessels, we used a "tet-on" inducible system (mice expressing rat insulin promoter-reverse tetracycline activator transgene and a tet-operon-angiogenic factor transgene) to increase the ß cell production of vascular endothelial growth factor-A (VEGF-A), angiopoietin-1 (Ang1), or angiopoietin-2 (Ang2) during islet cell differentiation and islet development. In VEGF-A overexpressing embryos, ECs began to accumulate around epithelial tubes residing in the central region of the developing pancreas (associated with endocrine cells) as early as embryonic day 12.5 (E12.5) and increased dramatically by E16.5. While α and ß cells formed islet cell clusters in control embryos at E16.5, the increased EC population perturbed endocrine cell differentiation and islet cell clustering in VEGF-A overexpressing embryos. With continued overexpression of VEGF-A, α and ß cells became scattered, remained adjacent to ductal structures, and never coalesced into islets, resulting in a reduction in ß cell proliferation and ß cell mass at postnatal day 1. A similar impact on islet morphology was observed when VEGF-A was overexpressed in ß cells during the postnatal period. In contrast, increased expression of Ang1 or Ang2 in ß cells in developing or adult islets did not alter islet differentiation, development, or morphology, but altered islet EC ultrastructure. These data indicate that (1) increased EC number does not promote, but actually impairs ß cell proliferation and islet formation; (2) the level of VEGF-A production by islet endocrine cells is critical for islet vascularization during development and postnatally; (3) angiopoietin-Tie2 signaling in endothelial cells does not have a crucial role in the development or maintenance of islet vascularization.


Assuntos
Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Angiopoietina-1/metabolismo , Angiopoietina-2/metabolismo , Animais , Contagem de Células , Células Endoteliais/metabolismo , Ilhotas Pancreáticas/irrigação sanguínea , Ilhotas Pancreáticas/metabolismo , Camundongos
13.
BMC Microbiol ; 8: 14, 2008 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-18215283

RESUMO

BACKGROUND: Helicobacter pylori colonizes the human stomach and is the etiological agent of peptic ulcer disease. All three H. pylori strains that have been sequenced to date contain a potential operon whose products share homology with the subunits of acetone carboxylase (encoded by acxABC) from Xanthobacter autotrophicus strain Py2 and Rhodobacter capsulatus strain B10. Acetone carboxylase catalyzes the conversion of acetone to acetoacetate. Genes upstream of the putative acxABC operon encode enzymes that convert acetoacetate to acetoacetyl-CoA, which is metabolized further to generate two molecules of acetyl-CoA. RESULTS: To determine if the H. pylori acxABC operon has a role in host colonization the acxB homolog in the mouse-adapted H. pylori SS1 strain was inactivated with a chloramphenicol-resistance (cat) cassette. In mouse colonization studies the numbers of H. pylori recovered from mice inoculated with the acxB:cat mutant were generally one to two orders of magnitude lower than those recovered from mice inoculated with the parental strain. A statistical analysis of the data using a Wilcoxin Rank test indicated the differences in the numbers of H. pylori isolated from mice inoculated with the two strains were significant at the 99% confidence level. Levels of acetone associated with gastric tissue removed from uninfected mice were measured and found to range from 10-110 mumols per gram wet weight tissue. CONCLUSION: The colonization defect of the acxB:cat mutant suggests a role for the acxABC operon in survival of the bacterium in the stomach. Products of the H. pylori acxABC operon may function primarily in acetone utilization or may catalyze a related reaction that is important for survival or growth in the host. H. pylori encounters significant levels of acetone in the stomach which it could use as a potential electron donor for microaerobic respiration.


Assuntos
Proteínas de Bactérias/fisiologia , Carboxiliases/fisiologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/fisiologia , Acetona/análise , Animais , Genes Bacterianos/genética , Camundongos , Camundongos Endogâmicos C57BL , Óperon , Mutação Puntual , Estômago/química , Estômago/microbiologia
14.
FEMS Microbiol Lett ; 259(1): 20-6, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16684097

RESUMO

Several Helicobacter pylori flagellar genes require sigma(54) for their transcription. Predicted H. pylori sigma(54)-dependent promoters display a preference for A at position -23 instead of C or T as occurs in promoters from most other bacteria. Substitution of the A at position -23 of the H. pylori flaB promoter with a C did not effect expression of a flaB'-'xylE reporter gene in H. pylori, whereas T or G substitutions at this position drastically reduced expression. Results of gel mobility shift assays that used DNA probes corresponding to core promoter sequences and a H. pylori sigma(54) protein fused to the Escherichia coli maltose-binding protein suggested that H. pylori sigma(54) has a higher affinity for promoters with an A at the -23 position. The failure to observe an effect on expression for the flaB mutant promoter with the A to C substitution at the -23 position indicates that sequences flanking the core promoter region may assist binding of H. pylori sigma(54) to the mutant flaB promoter. Alternatively, H. pylori RNA polymerase or the sigma(54)-dependent activator FlgR may compensate for the reduced affinity of sigma(54) for the mutant flaB promoter.


Assuntos
Flagelina/metabolismo , Regulação Bacteriana da Expressão Gênica , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Regiões Promotoras Genéticas/fisiologia , RNA Polimerase Sigma 54/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Sequência Consenso , Flagelina/genética , Proteínas Ligantes de Maltose , Dados de Sequência Molecular , Ativação Transcricional
15.
J Bacteriol ; 186(14): 4535-42, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15231786

RESUMO

Helicobacter pylori FlgR activates transcription with sigma54-RNA polymerase holoenzyme (sigma54-holoenzyme) from at least five flagellar operons. Activators of sigma54-holoenzyme generally bind enhancer sequences located >70 bp upstream of the promoter and contact sigma54-holoenzyme bound at the promoter through DNA looping to activate transcription. H. pylori FlgR lacks the carboxy-terminal DNA-binding domain present in most sigma54-dependent activators. As little as 42 bp of DNA upstream of the flaB promoter and 26 bp of DNA sequence downstream of the transcriptional start site were sufficient for efficient FlgR-mediated expression from a flaB'-'xylE reporter gene in H. pylori, indicating that FlgR does not use an enhancer to activate transcription. Other examples of sigma54-dependent activators that lack a DNA-binding domain include Chlamydia trachomatis CtcC and activators from the other Chlamydia spp. whose genomes have been sequenced. FlgR from Helicobacter hepaticus and Campylobacter jejuni, which are closely related to H. pylori, appear to have carboxy-terminal DNA-binding domains, suggesting that the loss of the DNA-binding domain from H. pylori FlgR occurred after the divergence of these bacterial species. Removal of the amino-terminal regulatory domain of FlgR resulted in a constitutively active form of the protein that activated transcription from sigma54-dependent genes in Escherichia coli. The truncated FlgR protein also activated transcription with E. coli sigma54-holoenzyme in an in vitro transcription assay.


Assuntos
Proteínas de Bactérias/fisiologia , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Fator sigma/metabolismo , Ativação Transcricional , Motivos de Aminoácidos , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Campylobacter jejuni/genética , Chlamydia trachomatis/genética , Sequência Conservada , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Elementos Facilitadores Genéticos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Flagelina/genética , Flagelina/metabolismo , Genes Reporter , Helicobacter hepaticus/genética , Immunoblotting , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , RNA Polimerase Sigma 54 , Transcrição Gênica , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...