Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257326

RESUMO

The production of cobalt oxide nanoparticles and their use in the adsorption of methylene blue (MB) from solution is described in the paper. The X-ray diffraction patterns show that the synthesized cobalt oxide nanoparticles have a crystalline cubic structure. The study of the adsorption of methylene blue onto the cobalt oxide nanoparticles involved determining the contact time and initial concentration of the adsorption of MB on the adsorbent. The kinetics of adsorption were analyzed using two kinetic models (pseudo-first order and pseudo-second order), and the pseudo-second-order model was found to be the most appropriate for describing the behavior of the adsorption. This study indicates that the MLTS (monolayer with the same number of molecules per site) model is the most suitable model for describing methylene blue/cobalt oxide systems, and the parameter values help to further understand the adsorption process with the steric parameters. Indicating that methylene blue is horizontally adsorbed onto the surface of the cobalt oxide, which is bonded to two different receptor sites. Regarding the temperature effect, it was found that the adsorption capacity increased, with the experimental value ranging from 313.7 to 405.3 mg g-1, while the MLTS predicted 313.32 and 408.16 mg g-1. From the thermodynamic functions, high entropy was found around 280 mg L-1 concentration. For all concentrations and temperatures examined, the Gibbs free energy and enthalpy of adsorption were found to be negative and positive, respectively, suggesting that the system is spontaneous and endothermic. According to this study's findings, methylene blue adsorption onto cobalt oxide nanoparticles happens via the creation of a monolayer, in which the same amount of molecules are adsorbed at two distinct locations. The findings shed light on the methylene blue adsorption process onto cobalt oxide nanoparticles, which have a variety of uses, including the remediation of wastewater.

2.
J Mol Model ; 28(2): 37, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35034209

RESUMO

Herein, bio-based alginates (Alg) containing metallic beads (Ce and Cu) were synthesized via an alginate cross-linking method, and their properties were studied using experimental techniques combined with theoretical simulations. Materials were characterized through Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscope (SEM) images, to determine the cross-linking structural features, thermal stability, and surface morphology of alginates. Besides, density functional theory (DFT) methods were employed to calculate global reactivity parameters such as HOMO-LUMO gap energies (ΔEH-L), electronegativity (χ), hardness (η), and electrophilic and nucleophilic indicators, using both gas and aqueous media for the study of the complexation process. Among other features, characterization of the thermal properties showed that Alg@Ce and Alg@Cu alginate beads behave differently as a function of the temperature. This behavior was also predicted by the conformation energy differences between Alg@Ce and Alg@Cu, which were found out theoretically and explained with the combined study of the vibrational modes between the carboxylate group with either Ce or Cu. Overall, the reactivity of the Alg@Ce alginate bead was higher than that of the Alg@Cu counterpart, results could be used as a cornerstone to employed the materials here studied in a wide range of applications.


Assuntos
Alginatos/química , Materiais Biocompatíveis/química , Cério/química , Fenômenos Químicos , Cobre/química , Modelos Teóricos , Algoritmos , Materiais Biocompatíveis/síntese química , Técnicas de Química Sintética , Química Verde , Modelos Moleculares , Análise Espectral
3.
ACS Omega ; 5(35): 22192-22207, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923777

RESUMO

Biosorption using natural waste has emerged as a potential and promising strategy for removal of toxic dyes from wastewaters in comparison to conventional ones. Herein, the Codium decorticatum alga (CDA) was biologically identified and used as a biosorbent for anionic and cationic dyes from aqueous solutions. SEM analysis showed a rough surface with an irregular edge and shape while hydroxyl, amine, sulfur and carboxyl functional groups were identified using FTIR analysis. TGA/DTG confirmed the stability of CDA and the adsorption process. Batch studies were conducted to investigate the effect of operational factors such as initial pH, biosorbent dosage, temperature, initial concentration, and solid/liquid contact time on the biosorption of crystal violet (CV) and Congo red (CR) dyes. For both CV and CR dyes, the biosorption kinetics was accurately described by the pseudo-second-order model and the Langmuir isotherm was found to be best fitted for equilibrium data. Maximum uptake capacities have attained up to 278.46 mg/g for CV and 191.01 mg/g for CR. The CV and CR dye biosorption mechanism was ultimately manifested through the electrostatic interactions. The regeneration study showed that the CDA presents excellent reuse performance up to four consecutive cycles. The process optimization was performed using the response surface methodology based on Box-Behnken design (RSM-BDD). Accordingly, the optimum predicted removal efficiencies using RSM-BBD for CV and CR were obtained, respectively, at 96.9 and 89.8% using a CDA dose of 1.5 g/L, dye concentration of 20 mg/L, pH of 10 for CV, and pH of 4 for CR. Overall, CDA behaves as an efficient, recyclable, cheap, and eco-friendly adsorbent for cleaning-up of dyed effluents.

4.
Acta Chim Slov ; 67(4): 1180-1195, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33533446

RESUMO

The lamellar and nanostructured manganese oxide materials were chemically synthesized by soft and non-toxic methods. The materials showed a monophasic character, symptomatic morphologies, as well as the predominance of a mesoporous structure. The removal of heavy metals Cd(II) and Pb(II) by the synthesized materials Na-MnO2, Urchin-MnO2 and Cocoon-MnO2 according to the mineral structure and nature of the sites were also studied. Kinetically, the lamellar manganese oxide material Na-MnO2 was the most efficient of the three materials which had more vacancies in the MnO6 layers as well as in the space between the layers. The nanomaterials Urchin-MnO2 and Cocoon-MnO2 could exchange with the metal cations in their tunnels and cavities, respectively. The maximum adsorbed quantities followed the order (Pb(II): Na-MnO2 (297 mg/g)?Urchin-MnO2 (264 mg/g)?Cocoon-MnO2 (209 mg/g), Cd(II): Na-MnO2 (199 mg/g)?Urchin-MnO2 (191 mg/g)?Cocoon-MnO2 (172 mg/g)). Na-MnO2 material exhibited the best stability among the different structures, Na-MnO2 presented a very low amount of the manganese released. The results obtained showed the potential of lamellar manganese oxides (Na-MnO2) and nanostructures (Urchin-MnO2 and Cocoon-MnO2) as selective, economical, and stable materials for the removal of toxic metals in an aqueous medium.

5.
Environ Sci Pollut Res Int ; 26(19): 19615-19631, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31079303

RESUMO

The present research highlights the use of a montmorillonite clay to remove p-nitrophenol (PNP) from aqueous solution. The montmorillonite clay was characterized using powder X-ray diffraction, Fourier-transformed infrared spectroscopy, scanning electron microscopy, X-ray fluorescence, Brunauer-Emmett-Teller analyses, and zero point charge in order to establish the adsorption behavior-properties relationship. The physiochemical parameters like pH, initial PNP concentration, and adsorbent dose as well as their binary interaction effects on the PNP adsorption yield were statistically optimized using response surface methodology. As a result, 99.5% removal of PNP was obtained under the optimal conditions of pH 2, adsorbent dose of 2 g/l, and PNP concentration of 20 mg/l. The interaction between adsorbent dose and initial concentration was the most influencing interaction on the PNP removal efficiency. The mass transfer of PNP at the solution/adsorbent interface was described using pseudo-first-order and intraparticle diffusion. Langmuir isotherm well fitted the experimental equilibrium data with a satisfactory maximum adsorption capacity of 122.09 mg/g. The PNP adsorption process was thermodynamically spontaneous and endothermic. The regeneration study showed that the montmorillonite clay exhibited an excellent recycling capability. Overall, the montmorillonite clay is very attractive as an efficient, low-cost, eco-friendly, and recyclable adsorbent for the remediation of hazardous phenolic compounds in industrial effluents.


Assuntos
Bentonita/química , Argila/química , Nitrofenóis/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Difusão , Concentração de Íons de Hidrogênio , Cinética , Propriedades de Superfície , Termodinâmica
6.
Chem Commun (Camb) ; 51(100): 17716-9, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26489786

RESUMO

Photoactive viologen fragments were covalently embedded within the material framework during the self-assembly and sol-gel polymerisation of phosphonate-terminated dendrimers and soluble titanium-oxo-species. The resulting porous anisotropic phosphonate-bridged-crystalline anatase materials serve as new hosts to disperse and stabilize small gold nanoparticles.


Assuntos
Dendrímeros/química , Nanopartículas Metálicas/química , Organofosfonatos/química , Titânio/química , Viologênios/química , Ouro/química , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Polimerização , Porosidade
7.
ACS Appl Mater Interfaces ; 7(36): 19994-20003, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26305597

RESUMO

Hitherto, the field of nanomedicine has been overwhelmingly dominated by the use of mesoporous organosilicas compared to their metal oxide congeners. Despite their remarkable reactivity, titanium oxide-based materials have been seldom evaluated and little knowledge has been gained with respect to their "structure-biological activity" relationship. Herein, a fruitful association of phosphorus dendrimers (both "ammonium-terminated" and "phosphonate-terminated") and titanium dioxide has been performed by means of the sol-gel process, resulting in mesoporous dendrimer-coated nanosized crystalline titanium dioxide. A similar organo-coating has been reproduced using single branch-mimicking dendrimers that allow isolation of an amorphous titanium dioxide. The impact of these materials on red blood cells was evaluated by studying cell hemolysis. Next, their cytotoxicity toward B14 Chinese fibroblasts and their antimicrobial activity were also investigated. Based on their variants (cationic versus anionic terminal groups and amorphous versus crystalline titanium dioxide phase), better understanding of the role of the surface-interface composition and the nature of the framework has been gained. No noticeable discrimination was observed for amorphous and crystalline material. In contrast, hemolysis and cytotoxicity were found to be sensitive to the nature of the interface composition, with the ammonium-terminated dendrimer-coated titanium dioxide being the most hemolytic and cytotoxic material. This surface-functionalization opens the door for creating a new synergistic machineries mechanism at the cellular level and seems promising for tailoring the biological activity of nanosized organic-inorganic hybrid materials.


Assuntos
Dendrímeros/química , Nanoestruturas/química , Titânio/química , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Células CHO , Candida albicans/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Eritrócitos/citologia , Eritrócitos/metabolismo , Bactérias Gram-Negativas , Bactérias Gram-Positivas/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Nanomedicina , Nanoestruturas/toxicidade , Porosidade , Espalhamento a Baixo Ângulo , Propriedades de Superfície , Difração de Raios X
8.
Dalton Trans ; 44(35): 15544-56, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26239184

RESUMO

The sol-gel co-condensation of organo-phosphonates to titanium alkoxides enables access to novel organic-inorganic hybrids based on phosphonate-bridged titanium dioxide. In this contribution, we bring new perspectives to the long established sol-gel mineralization of titanium alkoxide species, by harnessing the virtues of the well-designed phosphonate-terminated phosphorus dendrimers as reactive amphiphilic nanoreactor, confined medium and cross-linked template to generate discrete crystalline anatase nanoparticles at low temperature (T = 60 °C). An accurate investigation on several parameters (dendrimer generation, dendrimer-to-titanium alkoxide ratio, precursor reactivity, temperature, solvent nature, salt effect) allows a correlation between the network condensation, the opening porous framework and the crystalline phase formation. The evolution of the dendrimer skeleton upon heat treatment has been deeply monitored by means of (31)P NMR, XPS and Raman spectroscopy. Increasing the heteroatom content within a titania network provides the driving force for enhancing their photocatalytic water splitting ability for hydrogen production.

9.
Chemistry ; 20(31): 9596-606, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-24958393

RESUMO

Novel silicates were prepared by using silylated natural fatty acids (derived from triglyceride renewable oils) as co-condensing reagents in presence of tetraethyl orthosilicate (TEOS) and the triblock copolymer, pluronic P123, as a structure directing agent. A series of carboxylic acid functionalized SBA-15-type mesoporous silicates were obtained with tunable nanoscopic order and reactive functional groups that allow the conjugation of amino probes by peptide coupling. Photophysical studies of the covalently linked aminopyrene substantiated that the internal framework of these materials have pronounced hydrophobicity. Moreover, phase separation that can emanate from the bulkiness of the starting fatty silanes has been ruled out owing to the absence of excimers after aminopyrene grafting. The hemotoxicity, cytotoxicity, and antimicrobial activity of these novel silicates were then evaluated. Without discrimination, the functionalized silicates show a significant decrease of red blood cell hemolysis as compared to bare SBA-15-silica material. Within the modified silicate series, germanium-free mesoporous silicates induce only a slight decrease in cell viability and, more interestingly, they exhibit negligible hemolytic effect. Moreover, increasing their concentration in the medium reduces the concentration of released hemoglobin as a result of Hb adsorption. Promising antimicrobial properties were also observed for these silicates with a slight dependency on whether phenylgermanium fragments were present within the silicate framework.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Poloxaleno/química , Silanos/química , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Poloxaleno/farmacologia , Silanos/farmacologia , Propriedades de Superfície
10.
Nanoscale ; 5(7): 2850-6, 2013 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-23443334

RESUMO

The scarcity of low temperature syntheses of anatase nanocrystals prompted us to explore the use of surface-reactive fourth generation phosphorus-dendrimers as molds to control the nucleation and growth of titanium-oxo-species during the sol-gel mineralization process. Unexpectedly, the dendritic medium provides at low temperature, discrete anatase nanocrystals (4.8 to 5.2 nm in size), in marked contrast to the routinely obtained amorphous titanium dioxide phase under standard conditions. Upon thermal treatment, heteroatom migration from the branches to the nanoparticle surface and the ring opening polymerization of the cyclophosphazene core provide stable, interpenetrating mesoporous polyphosphazene-anatase hybrid materials (-P[double bond, length as m-dash]N-)n-TiO2. The steric hindrance of the dendritic skeleton, the passivation of the anatase surface by heteroatoms and the ring opening of the core limit the crystal growth of anatase to 7.4 nm and prevent, up to 800 °C, the commonly observed anatase-to-rutile phase transformation. Performing this mineralization in the presence of similar surface-reactive but non-dendritic skeletons (referred to as branch-mimicking dendrimers) failed to generate crystalline anatase and to efficiently limit the crystal growth, bringing thus clear evidence of the virtues of phosphorus dendrimers in the design of novel nanostructured materials.

11.
Chem Commun (Camb) ; 47(30): 8626-8, 2011 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-21717005

RESUMO

Controlled titanium alkoxide mineralization in the presence of phosphonated, dendrimeric nano-building blocks provides a new family of hierarchically porous dendrimer-bridged titanium dioxide materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...