Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Biochem Eng Biotechnol ; 65: 163-92, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-10533435

RESUMO

Ethanol is an effective, environmentally friendly, nonfossil, transportation biofuel that produces far less pollution than gasoline. Furthermore, ethanol can be produced from plentiful, domestically available, renewable, cellulosic biomass. However, cellulosic biomass contains two major sugars, glucose and xylose, and a major obstacle in this process is that Saccharomyces yeasts, traditionally used and still the only microorganisms currently used for large scale industrial production of ethanol from glucose, are unable to ferment xylose to ethanol. This makes the use of these safest, most effective Saccharomyces yeasts for conversion of biomass to ethanol economically unfeasible. Since 1980, scientists worldwide have actively been trying to develop genetically engineered Saccharomyces yeasts to ferment xylose. In 1993, we achieved a historic breakthrough to succeed in the development of the first genetically engineered Saccharomyces yeasts that can effectively ferment both glucose and xylose to ethanol. This was accomplished by carefully redesigning the yeast metabolic pathway for fermenting xylose to ethanol, including cloning three xylose-metabolizing genes, modifying the genetic systems controlling gene expression, changing the dynamics of the carbon flow, etc. As a result, our recombinant yeasts not only can effectively ferment both glucose and xylose to ethanol when these sugars are present separately in the medium, but also can effectively coferment both glucose and xylose present in the same medium simultaneously to ethanol. This has made it possible because we have genetically engineered the Saccharomyces yeasts as such that they are able to overcome some of the natural barrier present in all microorganisms, such as the synthesis of the xylose metabolizing enzymes not to be affected by the presence of glucose and by the absence of xylose in the medium. This first generation of genetically engineered glucose-xylose-cofermenting Saccharomyces yeasts relies on the presence of a high-copy-number 2 mu-based plasmid that contains the three cloned genetically modified xylose-metabolizing genes to provide the xylose-metabolizing capability. In 1995, we achieved another breakthrough by creating the super-stable genetically engineered glucose-xylose-cofermenting Saccharomyces yeasts which contain multiple copies of the same three xylose-metabolizing genes stably integrated on the yeast chromosome. This is another critical development which has made it possible for the genetically engineered yeasts to be effective for cofermenting glucose and xylose by continuous fermentation. It is widely believed that the successful development of the stable glucose-xylose-cofermenting Saccharomyces yeasts has made the biomass-to-ethanol technology a step much closer to commercialization. In this paper, we present an overview of our rationales and strategies as well as our methods and approaches that led to the ingenious design and successful development of our genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose to biofuel ethanol.


Assuntos
Celulose/metabolismo , Etanol/metabolismo , Engenharia Genética , Saccharomyces cerevisiae/genética , Biomassa , Fermentação/genética , Glucose/metabolismo , Saccharomyces cerevisiae/fisiologia , Xilose/metabolismo
2.
Appl Environ Microbiol ; 64(5): 1852-9, 1998 May.
Artigo em Inglês | MEDLINE | ID: mdl-9572962

RESUMO

Xylose is one of the major fermentable sugars present in cellulosic biomass, second only to glucose. However, Saccharomyces spp., the best sugar-fermenting microorganisms, are not able to metabolize xylose. We developed recombinant plasmids that can transform Saccharomyces spp. into xylose-fermenting yeasts. These plasmids, designated pLNH31, -32, -33, and -34, are 2 microns-based high-copy-number yeast-E. coli shuttle plasmids. In addition to the geneticin resistance and ampicillin resistance genes that serve as dominant selectable markers, these plasmids also contain three xylose-metabolizing genes, a xylose reductase gene, a xylitol dehydrogenase gene (both from Pichia stipitis), and a xylulokinase gene (from Saccharomyces cerevisiae). These xylose-metabolizing genes were also fused to signals controlling gene expression from S. cerevisiae glycolytic genes. Transformation of Saccharomyces sp. strain 1400 with each of these plasmids resulted in the conversion of strain 1400 from a non-xylose-metabolizing yeast to a xylose-metabolizing yeast that can effectively ferment xylose to ethanol and also effectively utilizes xylose for aerobic growth. Furthermore, the resulting recombinant yeasts also have additional extraordinary properties. For example, the synthesis of the xylose-metabolizing enzymes directed by the cloned genes in these recombinant yeasts does not require the presence of xylose for induction, nor is the synthesis repressed by the presence of glucose in the medium. These properties make the recombinant yeasts able to efficiently ferment xylose to ethanol and also able to efficiently coferment glucose and xylose present in the same medium to ethanol simultaneously.


Assuntos
Fermentação , Glucose/metabolismo , Saccharomyces/metabolismo , Xilose/metabolismo , Escherichia coli/genética , Engenharia Genética , Plasmídeos , Saccharomyces/genética , Transformação Genética
3.
Appl Biochem Biotechnol ; 63-65: 243-55, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-18576085

RESUMO

Agricultural residues, such as grain by-products, are rich in the hydrolyzable carbohydrate polymers hemicellulose and cellulose; hence, they represent a readily available source of the fermentable sugars xylose and glucose. The biomass-to-ethanol technology is now a step closer to commercialization because a stable recombinant yeast strain has been developed that can efficiently ferment glucose and xylose simultaneously (coferment) to ethanol. This strain, LNH-ST, is a derivative of Saccharomyces yeast strain 1400 that carries the xylose-catabolism encoding genes of Pichia stipitis in its chromosome. Continuous pure sugar cofermentation studies with this organism resulted in promising steady-state ethanol yields (70.4% of theoretical based on available sugars) at a residence time of 48 h. Further studies with corn biomass pretreated at the pilot scale confirmed the performance characteristics of the organism in a simultaneous saccharification and cofermentation (SSCF) process: LNH-ST converted 78.4% of the available glucose and 56.1% of the available xylose within 4 d, despite the presence of high levels of metabolic inhibitors. These SSCF data were reproducible at the bench scale and verified in a 9000-L pilot scale bioreactor.

4.
J Biol Chem ; 271(36): 22189-95, 1996 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-8703032

RESUMO

To better understand the mechanisms that regulate stable RNA synthesis, we have analyzed the RNA polymerase I and III transcriptional activities of extracts isolated from cells propagated under a variety of conditions. Under balanced growth conditions the levels of both RNA polymerase I- and III-specific transcription increased proportionally with growth rate. Upon nutritional starvation, RNA polymerase I transcription rapidly declined, followed by 5 S rDNA and eventually tDNA transcription. Transcriptional activities in extracts were restored when the nongrowing cultures were resuspended in fresh medium, although growth did not resume. The differential expression of 5 S rDNA and tDNA genes in extracts prepared from cells subjected to partial starvation was traced to a 5 S rDNA-specific inhibitor and not to a defect in any RNA polymerase III transcription factor. Characterization of this inhibitor indicated that it was not 5 S rRNA. It was sensitive to phenol extraction and resistant to RNase, and its target did not appear to be transcription factor IIIA. Not all treatments that slowed or stopped growth down-regulated the stable RNA transcription apparatus. Cells that have been subjected to either energy starvation or cycloheximide treatment still retain the ability to synthesize stable RNA in vitro, suggesting the presence of alternative regulatory mechanisms.


Assuntos
RNA Polimerase III/metabolismo , RNA Polimerase I/metabolismo , Transcrição Gênica , Ciclo Celular , Divisão Celular , Células Cultivadas , Pegada de DNA , Técnicas In Vitro , Plasmídeos/metabolismo , RNA/biossíntese , RNA Ribossômico 5S/biossíntese , Leveduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...