Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Risk Anal ; 39(8): 1783-1795, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30908695

RESUMO

Novel materials with unique or enhanced properties relative to conventional materials are being developed at an increasing rate. These materials are often referred to as advanced materials (AdMs) and they enable technological innovations that can benefit society. Despite their benefits, however, the unique characteristics of many AdMs, including many nanomaterials, are poorly understood and may pose environmental safety and occupational health (ESOH) risks that are not readily determined by traditional risk assessment methods. To assess these risks while keeping up with the pace of development, technology developers and risk assessors frequently employ risk-screening methods that depend on a clear definition for the materials that are to be assessed (e.g., engineered nanomaterial) as well as a method for binning materials into categories for ESOH risk prioritization. The term advanced material lacks a consensus definition and associated categorization or grouping system for risk screening. In this study, we aim to establish a practitioner-driven definition for AdMs and a practitioner-validated framework for categorizing AdMs into conceptual groupings based on material characteristics. Results from multiple workshops and interviews with practitioners provide consistent differentiation between AdMs and conventional materials, offer functional nomenclature for application science, and provide utility for future ESOH risk assessment prioritization. The definition and categorization framework established here serve as a first step in determining if and when there is a need for specific ESOH and regulatory screening for an AdM as well as the type and extent of risk-related information that should be collected or generated for AdMs and AdM-enabled technologies.


Assuntos
Saúde Ambiental , Teste de Materiais , Medição de Risco , Segurança
2.
Environ Sci Technol ; 53(6): 2937-2947, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30576114

RESUMO

Advanced oxidation processes via semiconductor photocatalysis for water treatment have been the subject of extensive research over the past three decades, producing many scientific reports focused on elucidating mechanisms and enhancing kinetics for the treatment of contaminants in water. Many of these reports imply that the ultimate goal of the research is to apply photocatalysis in municipal water treatment operations. However, this ignores immense technology transfer problems, perpetuating a widening gap between academic advocation and industrial application. In this Feature, we undertake a critical examination of the trajectory of photocatalytic water treatment research, assessing the viability of proposed applications and identifying those with the most promising future. Several strategies are proposed for scientists and engineers who aim to support research efforts to bring industrially relevant photocatalytic water treatment processes to fruition. Although the reassessed potential may not live up to initial academic hype, an unfavorable assessment in some areas does not preclude the transfer of photocatalysis for water treatment to other niche applications as the technology retains substantive and unique benefits.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Catálise , Oxirredução , Água
3.
Environ Sci Technol ; 51(22): 13319-13326, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29028332

RESUMO

A photocatalyst-coated optical fiber was coupled with a 318 nm ultraviolet-A light emitting diode, which activated the photocatalysts by interfacial photon-electron excitation while minimizing photonic energy losses due to conventional photocatalytic barriers. The light delivery mechanism was explored via modeling of evanescent wave energy produced upon total internal reflection and photon refraction into the TiO2 surface coating. This work explores aqueous phase LED-irradiated optical fibers for treating organic pollutants and for the first time proposes a dual-mechanistic approach to light delivery and photocatalytic performance. Degradation of a probe organic pollutant was evaluated as a function of optical fiber coating thickness, fiber length, and photocatalyst attachment method and compared against the performance of an equivalent catalyst mass in a completely mixed slurry reactor. Measured and simulated photon fluence through the optical fibers decreased as a function of fiber length, coating thickness, or TiO2 mass externally coated on the fiber. Thinner TiO2 coatings achieved faster pollutant removal rates from solution, and dip coating performed better than sol-gel attachment methods. TiO2 attached to optical fibers achieved a 5-fold higher quantum yield compared against an equivalent mass of TiO2 suspended in a slurry solution.


Assuntos
Fibras Ópticas , Titânio , Catálise , Oxirredução
4.
Environ Sci Technol ; 51(1): 514-521, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27982576

RESUMO

A major challenge for photocatalytic water purification with TiO2 is the strong inhibitory effect of natural organic matter (NOM), which can scavenge photogenerated holes and radicals and occlude ROS generation sites upon adsorption. This study shows that phosphate counteracts the inhibitory effect of humic acids (HA) by decreasing HA adsorption and mitigating electron-hole recombination. As a measure of the inhibitory effect of HA, the ratios of first-order reaction rate constants between photocatalytic phenol degradation in the absence versus presence of HA were calculated. This ratio was very high, up to 5.72 at 30 mg/L HA and pH 4.8 without phosphate, but was decreased to 0.76 (5 mg/L HA, pH 8.4) with 2 mM phosphate. The latter ratio indicates a surprising favorable effect of HA on TiO2 photocatalysis. FTIR analyses suggest that this favorable effect is likely due to a change in the conformation of adsorbed HA, from a multiligand exchange arrangement to a complexation predominantly between COOH groups in HA and the TiO2 surface in the presence of phosphate. This configuration can reduce hole consumption and facilitate electron transfer to O2 by the adsorbed HA (indicated by linear sweep voltammetry), which mitigates electron-hole recombination and enhances contaminant degradation. A decrease in HA surface adsorption and hole scavenging (the predominant inhibitory mechanisms of HA) by phosphate (2 mM) was indicated by a 50% decrease in the photocatalytic degradation rate of HA and 80% decrease in the decay rate coefficient of interfacial-related photooxidation in photocurrent transients. These results, which were validated with other compounds (FFA and cimetidine), indicate that anchoring phosphate - or anions that exert similar effects on the TiO2 surface - might be a feasible strategy to counteract the inhibitory effect of NOM during photocatalytic water treatment.


Assuntos
Elétrons , Substâncias Húmicas , Adsorção , Fosfatos , Recombinação Genética , Titânio/química
6.
Water Res ; 84: 362-71, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26302091

RESUMO

The ability of reactive oxygen species (ROS) to interact with priority pollutants is crucial for efficient water treatment by photocatalytic advanced oxidation processes (AOPs). However, background compounds in water such as natural organic matter (NOM) can significantly hinder targeted reactions and removal efficiency. This inhibition can be complex, interfering with degradation in solution and at the photocatalyst surface as well as hindering illumination efficiency and ROS production. We developed an analytical model to account for various inhibition mechanisms in catalytic AOPs, including competitive adsorption of inhibitors, scavenging of produced ROS at the surface and in solution, and the inner filtering of the excitation illumination, which combine to decrease ROS-mediated degradation. This model was validated with batch experiments using a variety of ROS producing systems (OH-generating TiO2 photocatalyst and H2O2-UV; (1)O2-generating photosensitive functionalized fullerenes and rose bengal) and inhibitory compounds (NOM, tert-butyl alcohol). Competitive adsorption by NOM and ROS scavenging were the most influential inhibitory mechanisms. Overall, this model enables accurate simulation of photocatalytic AOP performance when one or more inhibitory mechanisms are at work in a wide variety of application scenarios, and underscores the need to consider the effects of background constituents on degradation efficiency.


Assuntos
Poluentes Químicos da Água/metabolismo , Catálise , Peróxido de Hidrogênio/metabolismo , Oxirredução , Fotólise , Espécies Reativas de Oxigênio/metabolismo
7.
Water Res ; 60: 259-266, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24867602

RESUMO

The ability of reactive oxygen species (ROS) to interact with target pollutants is crucial for efficient water treatment using advanced oxidation processes (AOPs), and inhibition by natural organic matter (NOM) can significantly reduce degradation efficiency. We compare OH-based degradation (H2O2-UV) to (1)O2-based degradation (Rose Bengal) of several probe compounds (furfuryl alcohol, ranitidine, cimetidine) interacting in water containing background constituents likely to be found in treatment water such as natural organic matter (NOM) and phosphate, as well as in effluent from a waste-water treatment plant (WWTP). Hydroxyl radicals were much more susceptible to hindrance by all three background matrices (NOM, phosphate and WWTP effluent) tested, while (1)O2 was only slightly inhibited by NOM and not by phosphate or WWTP effluent. A mechanistic model accounting for this inhibition in terms of radical scavenging and inner filter effects was developed, and accurately simulated the results of the NOM interactions. These results underscore the importance of considering the effect of background constituents in the selection of photocatalysts and in the design of AOPs for emerging applications in tertiary treatment of wastewater effluent and disinfection of natural waters.


Assuntos
Radical Hidroxila/química , Oxigênio Singlete/química , Águas Residuárias/química , Purificação da Água/métodos , Peróxido de Hidrogênio/química , Modelos Químicos , Compostos Orgânicos/química , Oxirredução , Fotólise , Rosa Bengala/química , Raios Ultravioleta
8.
Environ Toxicol Chem ; 33(5): 1035-42, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24464681

RESUMO

There is an increasing likelihood of interactions between nanomaterials and munitions constituents in the environment resulting from the use of nanomaterials as additives to energetic formulations and potential contact in waste streams from production facilities and runoff from training ranges. The purpose of the present research was to determine the ability of nano-aluminum oxide (Al(2)O(3)) and multiwalled carbon nanotubes (MWCNTs) to adsorb the munitions constituents cyclotrimethylenetrinitramine (RDX) and tungsten (W) from aqueous solution as a first step in determining the long-term exposure, transport, and bioavailability implications of such interactions. The results indicate significant adsorption of RDX by MWCNTs and of W by nano-Al(2)O(3) (but not between W and MWCNT or RDX and nano-Al(2)O(3)). Kinetic sorption and desorption investigations indicated that the most sorption occurs nearly instantaneously (<5 min), with a relatively slower, secondary binding leading to statistically significant but relatively smaller increases in adsorption over 30 d. The RDX sorption that occurred during the initial interaction was irreversible, with long-term, reversible sorption likely the result of a secondary interaction; as interaction time increased, however, the portion of W irreversibly sorbed onto nano-Al(2)O(3) also increased. The present study shows that strong interactions between some munitions constituents and nanomaterials following environmental release are likely. Time-dependent binding has implications for the bioavailability, migration, transport, and fate of munitions constituents in the environment.


Assuntos
Óxido de Alumínio/química , Poluentes Ambientais/química , Substâncias Explosivas/química , Nanoestruturas/química , Nanotubos de Carbono/química , Triazinas/química , Tungstênio/química , Adsorção , Poluentes Ambientais/análise , Substâncias Explosivas/análise , Triazinas/análise , Tungstênio/análise , Água/química
9.
J Hazard Mater ; 260: 434-41, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23811364

RESUMO

This study investigates the photocatalytic efficiency, type of reactive oxygen species (ROS) produced, and potential for structural and morphological modification of anodic TiO2 nanotubes (NTs) synthesized using a novel, energy efficient, low temperature crystallization process. These TiO2 NTs show greater photocatalytic efficiency than traditional high-temperature sintered NTs or supported Degussa P25 TiO2, as measured by degradation of methyl orange, a model organic dye pollutant. EPR analysis shows that low-temperature crystallized TiO2 NTs generate both hydroxyl radicals and singlet oxygen, while high-temperature sintered TiO2 NTs generate primarily hydroxyl radicals but no singlet oxygen. This "cocktail" of reactive oxygen species, combined with an increased surface area, contributes to the increased efficiency of this photocatalytic material. Furthermore, variation of the NT crystallization parameters enables control of structural and morphological properties so that TiO2-NTs can be optimized for scale-up and for specific treatment scenarios.


Assuntos
Nanotecnologia/métodos , Nanotubos/química , Espécies Reativas de Oxigênio/química , Titânio/química , Compostos Azo/química , Catálise , Cristalização , Espectroscopia de Ressonância de Spin Eletrônica , Química Verde , Substâncias Perigosas , Radical Hidroxila , Teste de Materiais , Processos Fotoquímicos , Oxigênio Singlete , Temperatura , Águas Residuárias , Poluentes Químicos da Água/química , Purificação da Água/métodos
10.
Acc Chem Res ; 46(3): 834-43, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22738389

RESUMO

Ensuring reliable access to clean and affordable water is one of the greatest global challenges of this century. As the world's population increases, water pollution becomes more complex and difficult to remove, and global climate change threatens to exacerbate water scarcity in many areas, the magnitude of this challenge is rapidly increasing. Wastewater reuse is becoming a common necessity, even as a source of potable water, but our separate wastewater collection and water supply systems are not designed to accommodate this pressing need. Furthermore, the aging centralized water and wastewater infrastructure in the developed world faces growing demands to produce higher quality water using less energy and with lower treatment costs. In addition, it is impractical to establish such massive systems in developing regions that currently lack water and wastewater infrastructure. These challenges underscore the need for technological innovation to transform the way we treat, distribute, use, and reuse water toward a distributed, differential water treatment and reuse paradigm (i.e., treat water and wastewater locally only to the required level dictated by the intended use). Nanotechnology offers opportunities to develop next-generation water supply systems. This Account reviews promising nanotechnology-enabled water treatment processes and provides a broad view on how they could transform our water supply and wastewater treatment systems. The extraordinary properties of nanomaterials, such as high surface area, photosensitivity, catalytic and antimicrobial activity, electrochemical, optical, and magnetic properties, and tunable pore size and surface chemistry, provide useful features for many applications. These applications include sensors for water quality monitoring, specialty adsorbents, solar disinfection/decontamination, and high performance membranes. More importantly, the modular, multifunctional and high-efficiency processes enabled by nanotechnology provide a promising route both to retrofit aging infrastructure and to develop high performance, low maintenance decentralized treatment systems including point-of-use devices. Broad implementation of nanotechnology in water treatment will require overcoming the relatively high costs of nanomaterials by enabling their reuse and mitigating risks to public and environmental health by minimizing potential exposure to nanoparticles and promoting their safer design. The development of nanotechnology must go hand in hand with environmental health and safety research to alleviate unintended consequences and contribute toward sustainable water management.


Assuntos
Conservação dos Recursos Naturais , Nanotecnologia , Purificação da Água , Abastecimento de Água/normas , Segurança
11.
Chemosphere ; 90(8): 2315-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23177001

RESUMO

Using the 2010 Deepwater Horizon oil spill in the Gulf of Mexico as an impetus, we explored the potential for TiO(2)-mediated photocatalytic reactive oxygen species (ROS) generation to increase the bioavailability (solubility) and biodegradability of weathered oil after a spill. Food grade TiO(2), which is FDA approved for use as food additive in the United States, was tested as a photocatalyst for this novel application. Photocatalytic pre-treatment (0.05 wt.% TiO(2), UV irradiation 18 W m(-2), 350-400 nm) for 24 h in a bench top photoreactor increased the soluble organic carbon content of weathered oil by 60%, and enhanced its subsequent biodegradation (measured as O(2) consumption in a respirometer) by 37%. Photocatalytic pre-treatment was also tested outdoors under sunlight illumination, but no significant increase in solubility or biodegradation was observed after 11 d of exposure. Although sunlight irradiation of food-grade TiO(2) generated ROS (assessed by the degradation of 4-chlorophenol as a probe compound), the efficacy of weathered oil pre-treatment was apparently hindered by sinking of the photocatalysts under quiescent conditions and illumination occlusion by the oil. Overall, results indicate that photocatalytic pre-treatment to stimulate bioremediation of weathered oil deserves further consideration, but controlling the buoyancy and surface hydrophobicity of the photocatalysts will be important for future efforts to enable ROS generation in proximity to the target compounds.


Assuntos
Recuperação e Remediação Ambiental/métodos , Poluição por Petróleo , Petróleo/metabolismo , Titânio/química , Poluentes Químicos da Água/química , Biodegradação Ambiental , Golfo do México , Petróleo/análise , Processos Fotoquímicos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...