Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr C Struct Chem ; 79(Pt 6): 204-216, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37212787

RESUMO

We report here on the status of research on halogen bonds and other σ-hole interactions involving p-block elements in Lewis acidic roles, such as chalcogen bonds, pnictogen bonds and tetrel bonds. A brief overview of the available literature in this area is provided via a survey of the many review articles that address this field. Our focus has been to collect together most review articles published since 2013 to provide an easy entry into the extensive literature in this area. A snapshot of current research in the area is provided by an introduction to the virtual special issue compiled in this journal, comprising 11 articles and entitled `Halogen, chalcogen, pnictogen and tetrel bonds: structural chemistry and beyond.'

2.
Chem Commun (Camb) ; 58(80): 11252-11255, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36111597

RESUMO

The anionic rhodium complex cis-[Rh(CO)2I2]-, active in the Monsanto process for acetic acid production, has been heterogenised via Coulombic interactions in the pores of a UiO-66-type metal-organic framework (MOF). The MOF-supported catalyst is active for the carbonylation of methanol and is recyclable, retaining its framework crystallinity following catalysis. Intermediates in the catalytic cycle observed by IR spectroscopy confirm the same mechanism as the established homogeneous process.

3.
Chemistry ; 28(51): e202201408, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35675317

RESUMO

A family of seven silver(I)-perfluorocarboxylate-quinoxaline coordination polymers, [Ag4 (O2 CRF )4 (quin)4 ] 1-5 (RF =(CF2 )n-1 CF3 )4 , n=1 to 5); [Ag4 (O2 C(CF2 )2 CO2 )2 (quin)4 ] 6; [Ag4 (O2 CC6 F5 )4 (quin)4 ] 7 (quin=quinoxaline), denoted by composition as 4 : 4 : 4 phases, was synthesised from reaction of the corresponding silver(I) perfluorocarboxylate with excess quinoxaline. Compounds 1-7 adopt a common 2D layered structure in which 1D silver-perfluorcarboxylate chains are crosslinked by ditopic quinoxaline ligands. Solid-state reaction upon heating, involving loss of one equivalent of quinoxaline, yielding new crystalline 4 : 4 : 3 phases [Ag4 (O2 C(CF2 )n-1 CF3 )4 (quin)3 ]n (8-10, n=1 to 3), was followed in situ by PXRD and TGA studies. Crystal structures were confirmed by direct syntheses and structure determination. The solid-state reaction converting 4 : 4 : 4 to 4 : 4 : 3 phase materials involves cleavage and formation of Ag-N and Ag-O bonds to enable the structural rearrangement. One of the 4 : 4 : 3 phase coordination polymers (10) shows the remarkably high dielectric constant in the low electric field frequency range.

6.
Angew Chem Int Ed Engl ; 60(33): 17920-17924, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34062045

RESUMO

Post-synthetic modification (PSM) of the interpenetrated diamondoid metal-organic framework (Me2 NH2 )[In(BDC-NH2 )2 ] (BDC-NH2 =aminobenzenedicarboxylate) SHF-61 proceeds quantitatively in a single-crystal-to-single-crystal manner to yield the acetamide derivative (Me2 NH2 )[In(BDC-NHC(O)Me)2 ] SHF-62. Continuous breathing behaviour during activation/desolvation is retained upon PSM, but pore closing now leads to ring-flipping to avert steric clash of amide methyl groups of the modified ligands. This triggers a reduction in the amplitude of the breathing deformation in the two dimensions associated with pore diameter, but a large increase in the third dimension associated with pore length. The MOF is thereby converted from predominantly 2D breathing (in SHF-61) to a distinctly 3D breathing motion (in SHF-62) indicating a decoupling of the pore-width and pore-length breathing motions. These breathing motions have been mapped by a series of single-crystal diffraction studies.

11.
Faraday Discuss ; 225: 133-151, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33179673

RESUMO

The metal-organic framework (Me2NH2)2[Cd(NO2BDC)2] (SHF-81) comprises flattened tetrahedral Cd(O2CR)42- nodes, in which Cd(ii) centres are linked via NO2BDC2- ligands (2-nitrobenzene-1,4-dicarboxylate) to give a doubly interpenetrated anionic network, with charge balanced by two Me2NH2+ cations per Cd centre resident in the pores. The study establishes that this is a twinned α-quartz-type structure (trigonal, space group P3x21, x = 1 or 2), although very close to the higher symmetry ß-quartz arrangement (hexagonal, P6x22, x = 2 or 4) in its as-synthesised solvated form [Cd(NO2BDC)2]·2DMF·0.5H2O (SHF-81-DMF). The activated MOF exhibits very little N2 uptake at 77 K, but shows significant CO2 uptake at 273-298 K with an isosteric enthalpy of adsorption (ΔHads) at zero coverage of -27.4 kJ mol-1 determined for the MOF directly activated from SHF-81-DMF. A series of in situ diffraction experiments, both single-crystal X-ray diffraction (SCXRD) and powder X-ray diffraction (PXRD), reveal that the MOF is flexible and exhibits breathing behaviour with observed changes as large as 12% in the a- and b-axes (|Δa|, |Δb| < 1.8 Å) and 5.5% in the c-axis (|Δc| < 0.7 Å). Both the solvated SHF-81-DMF and activated/desolvated SHF-81 forms of the MOF exhibit linear negative thermal expansion (NTE), in which pores that run parallel to the c-axis expand in diameter (a- and b-axis) while contracting in length (c-axis) upon increasing temperature. Adsorption of CO2 gas at 298 K also results in linear negative expansion (Δa, Δb > 0; Δc < 0; ΔV > 0). The largest change in dimensions is observed during activation/desolvation from SHF-81-DMF to SHF-81 (Δa, Δb < 0; Δc > 0; ΔV < 0). Collectively the nine in situ diffraction experiments conducted suggest the breathing behaviour is continuous, although individual desolvation and adsorption experiments do not rule out the possibility of a gating or step at intermediate geometries that is coupled with continuous dynamic behaviour towards the extremities of the breathing amplitude.

12.
Inorg Chem ; 58(16): 10837-10845, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31386356

RESUMO

Metal-organic framework nanosheets (MONs) are attracting increasing attention as a diverse class of two-dimensional materials derived from metal-organic frameworks (MOFs). The principles behind the design of layered MOFs that can readily be exfoliated to form nanosheets, however, remain poorly understood. Here we systematically investigate an isoreticular series of layered MOFs functionalized with alkoxy substituents in order to understand the effect of substituent alkyl chain length on the structure and properties of the resulting nanosheets. A series of 2,5-alkoxybenzene-1,4-dicarboxylate ligands (O2CC6H2(OR)2CO2, R = methyl-pentyl, 1-5, respectively) was used to synthesize copper paddle-wheel MOFs. Rietveld and Pawley fitting of powder diffraction patterns for compounds Cu(3-5)(DMF) showed they adopt an isoreticular series with two-dimensional connectivity in which the interlayer distance increases from 8.68 Å (R = propyl) to 10.03 Å (R = pentyl). Adsorption of CO2 by the MOFs was found to increase from 27.2 to 40.2 cm3 g-1 with increasing chain length, which we attribute to the increasing accessible volume associated with increasing unit-cell volume. Ultrasound was used to exfoliate the layered MOFs to form MONs, with shorter alkyl chains resulting in higher concentrations of exfoliated material in suspension. The average height of MONs was investigated by AFM and found to decrease from 35 ± 26 to 20 ± 12 nm with increasing chain length, with the thinnest MONs observed being only 5 nm, corresponding to five framework layers. These results indicate that careful choice of ligand functionalities can be used to tune nanosheet structure and properties, enabling optimization for a variety of applications.

13.
Chemistry ; 25(39): 9237-9241, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-30985028

RESUMO

The energetics of halogen bond formation in solution have been investigated for a series of nickel fluoride halogen bond acceptors; trans-[NiF(2-C5 NF4 )(PEt3 )2 ] (A1), trans-[NiF{2-C5 NF3 (4-H)}(PEt3 )2 ] (A2), trans-[NiF{2-C5 NF3 (4-NMe2 )}(PEt3 )2 ] (A3) and trans-[NiF{2-C5 NF2 H(4-CF3 )}(PCy3 )2 ] (A4) with neutral organic halogen bond donors, iodopentafluorobenzene (D1), 1-iodononafluorobutane (D2) and bromopentafluorobenzene (D3), in order to establish the significance of changes from perfluoroaryl to perfluoroalkyl donors and from iodine to bromine donors. 19 F NMR titration experiments have been employed to obtain the association constants, enthalpy, and entropy for the halogen bond formed between these donor-acceptor partners in protiotoluene. For A2-A4, association constants of the halogen bonds formed with iodoperfluoroalkane (D2) are consistently larger than those obtained for analogous complexes with the iodoperfluoroarene (D1). For complexes formed with A2-A4, the strength of the halogen bond is significantly lowered upon modification of the halogen donor atom from I (in D1) to Br (in D3) (for D1: 5≤K285 ≤12 m-1 , for D3: 1.0≤K193 ≤1.6 m-1 ). The presence of the electron donating NMe2 substituent on the pyridyl ring of acceptor A3 led to an increase in -ΔH, and the association constants of the halogen bond complexes formed with D1-D3, compared to those formed by A1, A2 and A4 with the same donors.

14.
Chem Sci ; 9(15): 3767-3781, 2018 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-29780509

RESUMO

The syntheses of three series of complexes designed with self-complementary motifs for formation of halogen bonds between an iodotetrafluorophenyl ligand and a halide ligand at square-planar nickel are reported, allowing structural comparisons of halogen bonding between all four halides C6F4I···X-Ni (X = F, Cl, Br, I). In the series trans-[NiX(2,3,5,6-C6F4I)(PEt3)2] 1pX and trans-[NiX(2,3,4,5-C6F4I)(PEt3)2] (X = F, Cl, Br, I) 1oX, the iodine substituent on the benzene ring was positioned para and ortho to the metal, respectively. The phosphine substituents were varied in the series, trans-[NiX(2,3,5,6-C6F4I)(PEt2Ph)2] (X = F, I) 2pX. Crystal structures were obtained for the complete series 1pX, and for 1oF, 1oCl, 1oI and 2pI. All these complexes exhibited halogen bonds in the solid state, of which 1pF exhibited unique characteristics with a linear chain, the shortest halogen bond d(C6F4I···F-Ni) = 2.655(5) Å and the greatest reduction in halogen bond distance (I···F) compared to the sum of the Bondi van der Waals radii, 23%. The remaining complexes form zig-zag chains of halogen bonds with distances also reduced with respect to the sum of the van der Waals radii. The magnitude of the reductions follow the pattern F > Cl ∼ Br > I, 1pX > 1oX, consistent with the halogen bond strength following the same order. The variation in the I···X-Ni angles is consistent with the anisotropic charge distribution of the halide ligand. The temperature dependence of the X-ray structure of 1pF revealed a reduction in halogen bond distance of 0.055(7) Å on cooling from 240 to 111 K. Comparison of three polymorphs of 1oI shows that the halogen bond geometry may be altered significantly by the crystalline environment. The effect of the halogen bond on the 19F NMR chemical shift in the solid state is demonstrated by comparison of the magic-angle spinning NMR spectra of 1pF and 1oF with that of a complex incapable of halogen bond formation, trans-[NiF(C6F5)(PEt3)2] 3F. Halogen bonding causes deshielding of δiso in the component of the tensor perpendicular to the nickel coordination plane. The results demonstrate the potential of fluoride ligands for formation of halogen bonds in supramolecular structures.

15.
Angew Chem Int Ed Engl ; 57(17): 4532-4537, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29377466

RESUMO

Crabtree's catalyst was encapsulated inside the pores of the sulfonated MIL-101(Cr) metal-organic framework (MOF) by cation exchange. This hybrid catalyst is active for the heterogeneous hydrogenation of non-functionalized alkenes either in solution or in the gas phase. Moreover, encapsulation inside a well-defined hydrophilic microenvironment enhances catalyst stability and selectivity to hydrogenation over isomerization for substrates bearing ligating functionalities. Accordingly, the encapsulated catalyst significantly outperforms its homogeneous counterpart in the hydrogenation of olefinic alcohols in terms of overall conversion and selectivity, with the chemical microenvironment of the MOF host favouring one out of two competing reaction pathways.

16.
Inorg Chem ; 57(3): 1171-1183, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29308888

RESUMO

Two MOFs, [H2N(CH3)2][Zn3(TATB)2(HCOO)]·HN(CH3)2·DMF·6H2O (1) and Zn-HKUST-1 (2), were investigated as potential hosts to encapsulate Fe(III) heme (Fe(III) protoporphyrin IX = Fe(III)PPIX). Methyl orange (MO) adsorption was used as an initial model for substrate uptake. MOF 1 showed good adsorption of MO (10.3 ± 0.8 mg g-1) which could undergo in situ protonation upon exposure to aqueous HCl vapor. By contrast, MO uptake by 2 was much lower (2 ± 1 mg g-1), and PXRD indicated that structural instability on exposure to water was the likely cause. Two methods for Fe(III)PPIX-1 preparation were investigated: soaking and encapsulation. Encapsulation was verified by SEM-EDS and showed comparable concentrations of Fe(III)PPIX on exposed interior surfaces and on the original surface of fractured crystals. SEM-EDS results were consistent with ICP-OES data on bulk material (1.2 ± 0.1 mass % Fe). PXRD data showed that the framework in 1 was unchanged after encapsulation of Fe(III)PPIX. MO adsorption (5.8 ± 1.2 mg g-1) by Fe(III)PPIX-1 confirmed there is space for substrate diffusion into the framework, while the UV-vis spectrum of solubilized crystals confirmed that Fe(III)PPIX retained its integrity. A solid-state UV-vis spectrum of Fe(III)PPIX-1 indicated that Fe(III)PPIX was not in a µ-oxo dimeric form. Although single-crystal XRD data did not allow for full refinement of the encapsulated Fe(III)PPIX molecule owing to disorder of the metalloporphyrin, the Fe atom and pyrrole N atoms were located, enabling rigid-body modeling of the porphine core. Reaction of 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) with H2O2, catalyzed by Fe(III)PPIX-1 and -2, showed that Fe(III)PPIX-1 is significantly more efficient than Fe(III)PPIX-2 and is superior to solid Fe(III)PPIX-Cl. Fe(III)PPIX-1 was used to catalyze the oxidation of hydroquinone, thymol, benzyl alcohol, and phenyl ethanol by tert-butyl-hydroperoxide with t1/2 values that increase with increasing substrate molecular volume.

17.
Chem Sci ; 8(8): 5392-5398, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28970918

RESUMO

Control of intermolecular interactions is integral to harnessing self-assembly in nature. Here we demonstrate that control of the competition between hydrogen bonds and halogen bonds, the two most highly studied directional intermolecular interactions, can be exerted by choice of solvent (polarity) to direct the self-assembly of co-crystals. Competitive co-crystal formation has been investigated for three pairs of hydrogen bond and halogen bond donors, which can compete for a common acceptor group. These competitions have been examined in seven different solvents. Product formation has been determined and phase purity has been examined by analysis of powder X-ray diffraction patterns. Formation of hydrogen-bonded co-crystals is favoured from less polar solvents and halogen-bonded co-crystals from more polar solvents. The solvent polarity at which the crystal formation switches from hydrogen-bond to halogen-bond dominance depends on the relative strengths of the interactions, but is not a function of the solution-phase interactions alone. The results clearly establish that an appreciation of solvent effects is critical to obtain control of the intermolecular interactions.

19.
Faraday Discuss ; 203: 485-507, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28980683

RESUMO

The role of the closing lecture in a Faraday Discussion is to summarise the contributions made to the Discussion over the course of the meeting and in so doing capture the main themes that have arisen. This article is based upon my Closing Remarks Lecture at the 203rd Faraday Discussion meeting on Halogen Bonding in Supramolecular and Solid State Chemistry, held in Ottawa, Canada, on 10-12th July, 2017. The Discussion included papers on fundamentals and applications of halogen bonding in the solid state and solution phase. Analogous interactions involving main group elements outside group 17 were also examined. In the closing lecture and in this article these contributions have been grouped into the four themes: (a) fundamentals, (b) beyond the halogen bond, (c) characterisation, and (d) applications. The lecture and paper also include a short reflection on past work that has a bearing on the Discussion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...