Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 70(6): 1774-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25687643

RESUMO

OBJECTIVES: Although TB immunotherapy improves the results of conventional drug treatment, the effects of combining chemotherapy and immunotherapy have never been systematically evaluated. We used a comprehensive lung transcriptome analysis to directly compare the activity of combined chemotherapy and immunotherapy with that of single treatments in a mouse model of TB. METHODS: Mycobacterium tuberculosis-infected mice in the chronic phase of the disease (day 30) received: (i) isoniazid and rifampicin (drugs) daily for 30 days; (ii) DNA immunotherapy (DNA), consisting of four 100 µg injections at 10 day intervals; (iii) both therapies (DNA + drugs); or (iv) saline. The effects were evaluated 10 days after the end of treatment (day 70 post-infection). RESULTS: In all groups a systemic reduction in the load of bacilli was observed, bacilli became undetectable in the drugs and DNA + drugs groups, but the whole lung transcriptome analysis showed 867 genes exclusively modulated by the DNA + drugs combination. Gene enrichment analysis indicated that DNA + drugs treatment provided synergistic effects, including the down-regulation of proinflammatory cytokines and mediators of fibrosis, as confirmed by real-time PCR, ELISA, histopathology and hydroxyproline assay. CONCLUSIONS: Our results provide a molecular basis for the advantages of TB treatment using combined chemotherapy and DNA immunotherapy and demonstrate the synergistic effects obtained with this strategy.


Assuntos
Terapia Combinada/métodos , Tratamento Farmacológico/métodos , Imunoterapia/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/imunologia , Tuberculose/terapia , Animais , Antituberculosos/administração & dosagem , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Isoniazida/administração & dosagem , Pulmão/microbiologia , Pulmão/patologia , Camundongos Endogâmicos BALB C , Rifampina/administração & dosagem , Resultado do Tratamento , Vacinas de DNA/administração & dosagem
2.
Hum Vaccin Immunother ; 10(5): 1238-43, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24607935

RESUMO

Despite substantial efforts in recent years toward the development of new vaccines and drugs against tuberculosis (TB), success has remained elusive. Immunotherapy of TB with mycobacterial Hsp65 as a DNA vaccine (DNA-hsp65) results in a reduction of systemic bacterial loads and lung tissue damage, but the high homology of Hsp65 with the mammalian protein raises concern that pathological autoimmune responses may also be triggered. We searched for autoimmune responses elicited by DNA-hsp65 immunotherapy in mice chronically infected with TB by evaluating the humoral immune response and comprehensive histopathology using stereology. Cross-reactive antibodies between mycobacterial and mammalian Hsp60/65 were detected; however, no signs of pathological autoimmunity were found up to 60 days after the end of the therapy.


Assuntos
Anticorpos Antibacterianos/imunologia , Autoimunidade/imunologia , Proteínas de Bactérias/imunologia , Chaperonina 60/imunologia , Proteínas Mitocondriais/imunologia , Mycobacterium leprae/imunologia , Vacinas de DNA/imunologia , Animais , Autoimunidade/efeitos dos fármacos , Proteínas de Bactérias/administração & dosagem , Chaperonina 60/administração & dosagem , Chaperonina 60/antagonistas & inibidores , Reações Cruzadas/efeitos dos fármacos , Reações Cruzadas/imunologia , Imunidade Humoral/efeitos dos fármacos , Imunidade Humoral/imunologia , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Mitocondriais/antagonistas & inibidores , Vacinas contra a Tuberculose/administração & dosagem , Vacinas contra a Tuberculose/imunologia , Vacinas de DNA/administração & dosagem
3.
Hum Vaccin Immunother ; 9(5): 1093-103, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23324590

RESUMO

Despite the enormous efforts displayed globally in the fight against tuberculosis, the disease incidence has modified slightly, which has led to a renewed interest in immunotherapy. In general, successful immunotherapeutic candidates against tuberculosis are agents that can trigger strong, specific pro-inflammatory responses, especially of the T-helper (Th) 1 pattern. However, how these pro-inflammatory agents effectively kill the bacteria without eliciting immunopathology is not well understood. We reasoned that, in addition to the specific immune response elicited by immunotherapy, the evaluation of the overall pro-inflammatory responses should provide additional and valuable information that will be useful in avoiding immunopathology. We evaluated the overall IFN-γ and IL-17 pro-inflammatory responses among CD4(+), CD8(+) and γδ T cells in the lungs of mice that were infected with M. tuberculosis and treated with a DNA vaccine in an immunotherapeutic regimen. Our results demonstrate that mice that effectively combat the pathogen develop a strong, specific Th1 immune response against the therapeutic antigen and have reduced lung inflammation, present in parallel a fine-tuning in the total IFN-γ- and IL-17-mediated immunity in the lungs. This modulation of the total immune response involves reducing the Th17 cell population, augmenting CD8(+) T cells that produce IFN-γ and increasing the total γδ T cell frequency. These results stress the importance of a broad evaluation of not only the specific immune response at the time to evaluate new immune interventional strategies against tuberculosis but also non-conventional T cells, such as γδ T lymphocytes.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Terapia Genética/métodos , Inflamação , Interferon gama/metabolismo , Interleucina-17/metabolismo , Tuberculose/terapia , Animais , Modelos Animais de Doenças , Feminino , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Receptores de Antígenos de Linfócitos T gama-delta/imunologia
4.
Expert Opin Biol Ther ; 8(9): 1255-64, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18694348

RESUMO

BACKGROUND: Tuberculosis is a major threat to human health. The high disease burden remains unaffected and the appearance of extremely drug-resistant strains in different parts of the world argues in favor of the urgent need for a new effective vaccine. One of the promising candidates is heat-shock protein 65 when used as a genetic vaccine (DNAhsp65). Nonetheless, there are substantial data indicating that BCG, the only available anti-TB vaccine for clinical use, provides other important beneficial effects in immunized infants. METHODS: We compared the protective efficacy of BCG and Hsp65 antigens in mice using different strategies: i) BCG, single dose subcutaneously; ii) naked DNAhsp65, four doses, intramuscularly; iii) liposomes containing DNAhsp65, single dose, intranasally; iv) microspheres containing DNAhsp65 or rHsp65, single dose, intramuscularly; and v) prime-boost with subcutaneous BCG and intramuscular DNAhsp65. RESULTS: All the immunization protocols were able to protect mice against infection, with special benefits provided by DNAhsp65 in liposomes and prime-boost strategies. CONCLUSION: Among the immunization protocols tested, liposomes containing DNAhsp65 represent the most promising strategy for the development of a new anti-TB vaccine.


Assuntos
Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Chaperoninas/imunologia , Mycobacterium leprae/metabolismo , Tuberculose/prevenção & controle , Animais , Proteínas de Bactérias/metabolismo , Vacinas Bacterianas/administração & dosagem , Chaperonina 60 , Chaperoninas/metabolismo , DNA Bacteriano/genética , Ensaio de Imunoadsorção Enzimática , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium leprae/genética , Plasmídeos
5.
BMC Immunol ; 9: 38, 2008 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-18647414

RESUMO

BACKGROUND: The greatest challenges in vaccine development include optimization of DNA vaccines for use in humans, creation of effective single-dose vaccines, development of delivery systems that do not involve live viruses, and the identification of effective new adjuvants. Herein, we describe a novel, simple technique for efficiently vaccinating mice against tuberculosis (TB). Our technique consists of a single-dose, genetic vaccine formulation of DNA-hsp65 complexed with cationic liposomes and administered intranasally. RESULTS: We developed a novel and non-toxic formulation of cationic liposomes, in which the DNA-hsp65 vaccine was entrapped (ENTR-hsp65) or complexed (COMP-hsp65), and used to immunize mice by intramuscular or intranasal routes. Although both liposome formulations induced a typical Th1 pattern of immune response, the intramuscular route of delivery did not reduce the number of bacilli. However, a single intranasal immunization with COMP-hsp65, carrying as few as 25 microg of plasmid DNA, leads to a remarkable reduction of the amount of bacilli in lungs. These effects were accompanied by increasing levels of IFN-gamma and lung parenchyma preservation, results similar to those found in mice vaccinated intramuscularly four times with naked DNA-hsp65 (total of 400 microg). CONCLUSION: Our objective was to overcome the significant obstacles currently facing DNA vaccine development. Our results in the mouse TB model showed that a single intranasal dose of COMP-hsp65 elicited a cellular immune response that was as strong as that induced by four intramuscular doses of naked-DNA. This formulation allowed a 16-fold reduction in the amount of DNA administered. Moreover, we demonstrated that this vaccine is safe, biocompatible, stable, and easily manufactured at a low cost. We believe that this strategy can be applied to human vaccines to TB in a single dose or in prime-boost protocols, leading to a tremendous impact on the control of this infectious disease.


Assuntos
Proteínas de Bactérias/administração & dosagem , Chaperoninas/administração & dosagem , Mycobacterium tuberculosis , Vacinas contra a Tuberculose/administração & dosagem , Tuberculose Pulmonar/imunologia , Vacinas de DNA/administração & dosagem , Administração Intranasal , Animais , Proteínas de Bactérias/imunologia , Chaperonina 60 , Chaperoninas/imunologia , Feminino , Imunidade Ativa/efeitos dos fármacos , Imunização Secundária , Lipossomos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Células Th1/efeitos dos fármacos , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/prevenção & controle
6.
Vaccine ; 26(3): 305-15, 2008 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-18083279

RESUMO

We have investigated the effect of pcDNA3-CpG and pcDNA-IL-12, delivered by intradermal gene gun administration, on the blood/lung eosinophilia, airway hyperresponsiveness as well as the immune response in a murine model of toxocariasis. Our results demonstrated that pcDNA-IL-12 but not pcDNA3-CpG vaccination led to a persistent lower blood/bronchoalveolar eosinophilia following Toxocara canis infection, as pcDNA3-CpG led only to an early transient blockage of eosinophil transmigration into bronchoalveolar fluid following T. canis infection. Prominent Type-1 immune response was pointed out as the hallmark of T. canis infection following pcDNA-IL-12 vaccination. Outstanding IFN-gamma/IL-4 ratio besides low levels of IgG1 with subsequent high IgG2a/IgG1 ratio further characterized a Type-1 polarized immunological profile in pcDNA-IL-12-vaccinated animals. Nevertheless, only pcDNA3-CpG was able to prevent airway hyperresponsiveness induced by T. canis infection. The persistent airway hyperresponsiveness observed in pcDNA-IL-12-vaccinated animals demonstrated that the airway constriction involved other immunological mediator than those blocked by pcDNA-IL-12. Together, these data indicated that pcDNA-IL-12 and pcDNA3-CpG vaccines have distinct therapeutic benefits regarding the eosinophilic inflammation/airway hyperresponsiveness triggered by T. canis infection, suggesting their possible use in further combined therapeutic interventions.


Assuntos
Hiper-Reatividade Brônquica/prevenção & controle , Ilhas de CpG , Interleucina-12 , Plasmídeos/genética , Eosinofilia Pulmonar/prevenção & controle , Toxocaríase/complicações , Vacinas de DNA/administração & dosagem , Animais , Biolística , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Ilhas de CpG/genética , Ilhas de CpG/imunologia , Cães , Feminino , Interleucina-12/administração & dosagem , Interleucina-12/genética , Interleucina-12/imunologia , Pulmão/citologia , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Toxocara canis , Toxocaríase/imunologia , Toxocaríase/parasitologia , Resultado do Tratamento , Vacinação , Vacinas de DNA/imunologia
7.
Genet Vaccines Ther ; 5: 12, 2007 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-18047644

RESUMO

BACKGROUND: Vaccination of neonates is generally difficult due to the immaturity of the immune system and consequent higher susceptibility to tolerance induction. Genetic immunization has been described as an alternative to trigger a stronger immune response in neonates, including significant Th1 polarization. In this investigation we analysed the potential use of a genetic vaccine containing the heat shock protein (hsp65) from Mycobacterium leprae (pVAXhsp65) against tuberculosis (TB) in neonate mice. Aspects as antigen production, genomic integration and immunogenicity were evaluated. METHODS: Hsp65 message and genomic integration were evaluated by RT-PCR and Southern blot, respectively. Immunogenicity of pVAXhsp65 alone or combined with BCG was analysed by specific induction of antibodies and cytokines, both quantified by ELISA. RESULTS: This DNA vaccine was transcribed by muscular cells of neonate mice without integration into the cellular genome. Even though this vaccine was not strongly immunogenic when entirely administered (three doses) during early animal's life, it was not tolerogenic. In addition, pVAXhsp65 and BCG were equally able to prime newborn mice for a strong and mixed immune response (Th1 + Th2) to pVAXhsp65 boosters administered later, at the adult life. CONCLUSION: These results suggest that pVAXhsp65 can be safely used as a priming stimulus in neonate animals in prime-boost similar strategies to control TB. However, priming with BCG or pVAXhsp65, directed the ensuing immune response triggered by an heterologous or homologous booster, to a mixed Th1/Th2 pattern of response. Measures as introduction of IL-12 or GM-CSF genes in the vaccine construct or even IL-4 neutralization, are probably required to increase the priming towards Th1 polarization to ensure control of tuberculosis infection.

8.
Genet Vaccines Ther ; 5: 7, 2007 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-17714584

RESUMO

Vaccines are considered by many to be one of the most successful medical interventions against infectious diseases. But many significant obstacles remain, such as optimizing DNA vaccines for use in humans or large animals. The amount of doses, route and easiness of administration are also important points to consider in the design of new DNA vaccines. Heterologous prime-boost regimens probably represent the best hope for an improved DNA vaccine strategy. In this study, we have shown that heterologous prime-boost vaccination against tuberculosis (TB) using intranasal BCG priming/DNA-HSP65 boosting (BCGin/DNA) provided significantly greater protection than that afforded by a single subcutaneous or intranasal dose of BCG. In addition, BCGin/DNA immunization was also more efficient in controlling bacterial loads than were the other prime-boost schedules evaluated or three doses of DNA-HSP65 as a naked DNA. The single dose of DNA-HSP65 booster enhanced the immunogenicity of a single subcutaneous BCG vaccination, as evidenced by the significantly higher serum levels of anti-Hsp65 IgG2a Th1-induced antibodies, as well as by the significantly greater production of IFN-gamma by antigen-specific spleen cells. The BCG prime/DNA-HSP65 booster was also associated with better preservation of lung parenchyma. The improvement of the protective effect of BCG vaccine mediated by a DNA-HSP65 booster suggests that our strategy may hold promise as a safe and effective vaccine against TB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...