Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 82(1): 190-208.e17, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34932975

RESUMO

Developmental genes such as Xist, which initiates X chromosome inactivation, are controlled by complex cis-regulatory landscapes, which decode multiple signals to establish specific spatiotemporal expression patterns. Xist integrates information on X chromosome dosage and developmental stage to trigger X inactivation in the epiblast specifically in female embryos. Through a pooled CRISPR screen in differentiating mouse embryonic stem cells, we identify functional enhancer elements of Xist at the onset of random X inactivation. Chromatin profiling reveals that X-dosage controls the promoter-proximal region, while differentiation cues activate several distal enhancers. The strongest distal element lies in an enhancer cluster associated with a previously unannotated Xist-enhancing regulatory transcript, which we named Xert. Developmental cues and X-dosage are thus decoded by distinct regulatory regions, which cooperate to ensure female-specific Xist upregulation at the correct developmental time. With this study, we start to disentangle how multiple, functionally distinct regulatory elements interact to generate complex expression patterns in mammals.


Assuntos
Elementos Facilitadores Genéticos , Loci Gênicos , Células-Tronco Embrionárias Murinas/metabolismo , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , Inativação do Cromossomo X , Cromossomo X , Animais , Diferenciação Celular , Linhagem Celular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regulação para Cima
2.
Dev Cell ; 55(5): 629-647.e7, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33080171

RESUMO

Conserved protein kinases with core cellular functions have been frequently redeployed during metazoan evolution to regulate specialized developmental processes. The Ser/Arg (SR)-rich splicing factor (SRSF) protein kinase (SRPK), which is implicated in splicing regulation, is one such conserved eukaryotic kinase. Surprisingly, we show that SRPK has acquired the capacity to control a neurodevelopmental ubiquitin signaling pathway. In mammalian embryonic stem cells and cultured neurons, SRPK phosphorylates Ser-Arg motifs in RNF12/RLIM, a key developmental E3 ubiquitin ligase that is mutated in an intellectual disability syndrome. Processive phosphorylation by SRPK stimulates RNF12-dependent ubiquitylation of nuclear transcription factor substrates, thereby acting to restrain a neural gene expression program that is aberrantly expressed in intellectual disability. SRPK family genes are also mutated in intellectual disability disorders, and patient-derived SRPK point mutations impair RNF12 phosphorylation. Our data reveal unappreciated functional diversification of SRPK to regulate ubiquitin signaling that ensures correct regulation of neurodevelopmental gene expression.


Assuntos
Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Núcleo Celular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Deficiência Intelectual/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas/metabolismo , Mutação/genética , Neurônios/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Proteólise , Especificidade por Substrato , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
Nat Cell Biol ; 22(4): 498-511, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32203420

RESUMO

Rho GTPases are central regulators of the cytoskeleton and, in humans, are controlled by 145 multidomain guanine nucleotide exchange factors (RhoGEFs) and GTPase-activating proteins (RhoGAPs). How Rho signalling patterns are established in dynamic cell spaces to control cellular morphogenesis is unclear. Through a family-wide characterization of substrate specificities, interactomes and localization, we reveal at the systems level how RhoGEFs and RhoGAPs contextualize and spatiotemporally control Rho signalling. These proteins are widely autoinhibited to allow local regulation, form complexes to jointly coordinate their networks and provide positional information for signalling. RhoGAPs are more promiscuous than RhoGEFs to confine Rho activity gradients. Our resource enabled us to uncover a multi-RhoGEF complex downstream of G-protein-coupled receptors controlling CDC42-RHOA crosstalk. Moreover, we show that integrin adhesions spatially segregate GEFs and GAPs to shape RAC1 activity zones in response to mechanical cues. This mechanism controls the protrusion and contraction dynamics fundamental to cell motility. Our systems analysis of Rho regulators is key to revealing emergent organization principles of Rho signalling.


Assuntos
Citoesqueleto/genética , Proteínas Ativadoras de GTPase/genética , Integrinas/genética , Mecanotransdução Celular/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Proteínas rac1 de Ligação ao GTP/genética , Animais , Células COS , Adesão Celular , Linhagem Celular , Movimento Celular , Chlorocebus aethiops , Biologia Computacional , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Cães , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Proteínas Ativadoras de GTPase/classificação , Proteínas Ativadoras de GTPase/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Integrinas/metabolismo , Células Madin Darby de Rim Canino , Camundongos , Pan troglodytes , Domínios Proteicos , Ratos , Fatores de Troca de Nucleotídeo Guanina Rho/classificação , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
4.
Cell Rep ; 23(6): 1599-1611, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29742418

RESUMO

X-linked intellectual disability (XLID) is a heterogeneous syndrome affecting mainly males. Human genetics has identified >100 XLID genes, although the molecular and developmental mechanisms underpinning this disorder remain unclear. Here, we employ an embryonic stem cell model to explore developmental functions of a recently identified XLID gene, the RNF12/RLIM E3 ubiquitin ligase. We show that RNF12 catalytic activity is required for proper stem cell maintenance and neural differentiation, and this is disrupted by patient-associated XLID mutation. We further demonstrate that RNF12 XLID mutations specifically impair ubiquitylation of developmentally relevant substrates. XLID mutants disrupt distinct RNF12 functional modules by either inactivating the catalytic RING domain or interfering with a distal regulatory region required for efficient ubiquitin transfer. Our data thereby uncover a key function for RNF12 E3 ubiquitin ligase activity in stem cell and neural development and identify mechanisms by which this is disrupted in intellectual disability.


Assuntos
Diferenciação Celular/genética , Genes Ligados ao Cromossomo X , Deficiência Intelectual/genética , Mutação/genética , Neurônios/patologia , Ubiquitina-Proteína Ligases/genética , Animais , Biocatálise , Sistemas CRISPR-Cas , Núcleo Celular/metabolismo , Inativação Gênica , Humanos , Masculino , Camundongos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neurônios/metabolismo , Multimerização Proteica , Estabilidade Proteica , Proteólise , Especificidade por Substrato , Ubiquitina/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...