Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 121(1): 26-39, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37985428

RESUMO

Agrobacterium tumefaciens is a plant pathogen, broadly known as the causal agent of the crown gall disease. The soil bacterium is naturally resistant to beta-lactam antibiotics by utilizing the inducible beta-lactamase AmpC. Our picture on the condition-dependent regulation of ampC expression is incomplete. A known regulator is AmpR controlling the transcription of ampC in response to unrecycled muropeptides as a signal for cell wall stress. In our study, we uncovered the global transcriptional regulator LsrB as a critical player acting upstream of AmpR. Deletion of lsrB led to severe ampicillin and penicillin sensitivity, which could be restored to wild-type levels by lsrB complementation. By transcriptome profiling via RNA-Seq and qRT-PCR and by electrophoretic mobility shift assays, we show that ampD coding for an anhydroamidase involved in peptidoglycan recycling is under direct negative control by LsrB. Controlling AmpD levels by the LysR-type regulator in turn impacts the cytoplasmic concentration of cell wall degradation products and thereby the AmpR-mediated regulation of ampC. Our results substantially expand the existing model of inducible beta-lactam resistance in A. tumefaciens by establishing LsrB as higher-level transcriptional regulator.


Assuntos
Agrobacterium tumefaciens , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , beta-Lactamases/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica , Resistência beta-Lactâmica/genética
2.
PLoS Comput Biol ; 18(7): e1010240, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35797361

RESUMO

It is well-established that neural networks can predict or identify structural motifs of non-coding RNAs (ncRNAs). Yet, the neural network based identification of RNA structural motifs is limited by the availability of training data that are often insufficient for learning features of specific ncRNA families or structural motifs. Aiming to reliably identify intrinsic transcription terminators in bacteria, we introduce a novel pre-training approach that uses inverse folding to generate training data for predicting or identifying a specific family or structural motif of ncRNA. We assess the ability of neural networks to identify secondary structure by systematic in silico mutagenesis experiments. In a study to identify intrinsic transcription terminators as functionally well-understood RNA structural motifs, our inverse folding based pre-training approach significantly boosts the performance of neural network topologies, which outperform previous approaches to identify intrinsic transcription terminators. Inverse-folding based pre-training provides a simple, yet highly effective way to integrate the well-established thermodynamic energy model into deep neural networks for identifying ncRNA families or motifs. The pre-training technique is broadly applicable to a range of network topologies as well as different types of ncRNA families and motifs.


Assuntos
Redes Neurais de Computação , RNA não Traduzido , Humanos , Motivos de Nucleotídeos , RNA não Traduzido/química , RNA não Traduzido/genética
3.
Mol Microbiol ; 116(1): 126-139, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33560537

RESUMO

Small RNAs (sRNAs) are universal posttranscriptional regulators of gene expression and hundreds of sRNAs are frequently found in each and every bacterium. In order to coordinate cellular processes in response to ambient conditions, many sRNAs are differentially expressed. Here, we asked how these small regulators are regulated using Agrobacterium tumefaciens as a model system. Among the best-studied sRNAs in this plant pathogen are AbcR1 regulating numerous ABC transporters and PmaR, a regulator of peptidoglycan biosynthesis, motility, and ampicillin resistance. We report that the LysR-type regulator VtlR (also known as LsrB) controls expression of AbcR1 and PmaR. A vtlR/lsrB deletion strain showed growth defects, was sensitive to antibiotics and severely compromised in plant tumor formation. Transcriptome profiling by RNA-sequencing revealed more than 1,200 genes with altered expression in the mutant. Consistent with the function of VtlR/LsrB as regulator of AbcR1, many ABC transporter genes were affected. Interestingly, the transcription factor did not only control the expression of AbcR1 and PmaR. In the mutant, 102 sRNA genes were significantly up- or downregulated. Thus, our study uncovered VtlR/LsrB as the master regulator of numerous sRNAs. Thereby, the transcriptional regulator harnesses the regulatory power of sRNAs to orchestrate the expression of distinct sub-regulons.


Assuntos
Agrobacterium tumefaciens/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , RNA Bacteriano/biossíntese , Pequeno RNA não Traduzido/biossíntese , Fatores de Transcrição/genética , Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/genética , Agrobacterium tumefaciens/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Transporte/metabolismo , Deleção de Genes , Peptidoglicano/biossíntese , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Ativação Transcricional/genética
4.
Nucleic Acids Res ; 48(12): e71, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32463449

RESUMO

The dynamic conformation of RNA molecules within living cells is key to their function. Recent advances in probing the RNA structurome in vivo, including the use of SHAPE (Selective 2'-Hydroxyl Acylation analyzed by Primer Extension) or kethoxal reagents or DMS (dimethyl sulfate), provided unprecedented insights into the architecture of RNA molecules in the living cell. Here, we report the establishment of lead probing in a global RNA structuromics approach. In order to elucidate the transcriptome-wide RNA landscape in the enteric pathogen Yersinia pseudotuberculosis, we combined lead(II) acetate-mediated cleavage of single-stranded RNA regions with high-throughput sequencing. This new approach, termed 'Lead-seq', provides structural information independent of base identity. We show that the method recapitulates secondary structures of tRNAs, RNase P RNA, tmRNA, 16S rRNA and the rpsT 5'-untranslated region, and that it reveals global structural features of mRNAs. The application of Lead-seq to Y. pseudotuberculosis cells grown at two different temperatures unveiled the first temperature-responsive in vivo RNA structurome of a bacterial pathogen. The translation of candidate genes derived from this approach was confirmed to be temperature regulated. Overall, this study establishes Lead-seq as complementary approach to interrogate intracellular RNA structures on a global scale.


Assuntos
Análise de Sequência de RNA/métodos , Transcriptoma , Acetatos/química , Chumbo/química , Conformação de Ácido Nucleico , RNA Bacteriano/química , Yersinia pseudotuberculosis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...