Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 25(11): 3053-3065, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-30279459

RESUMO

The hippocampus is a heterogeneous structure, comprising histologically distinguishable subfields. These subfields are differentially involved in memory consolidation, spatial navigation and pattern separation, complex functions often impaired in individuals with brain disorders characterized by reduced hippocampal volume, including Alzheimer's disease (AD) and schizophrenia. Given the structural and functional heterogeneity of the hippocampal formation, we sought to characterize the subfields' genetic architecture. T1-weighted brain scans (n = 21,297, 16 cohorts) were processed with the hippocampal subfields algorithm in FreeSurfer v6.0. We ran a genome-wide association analysis on each subfield, co-varying for whole hippocampal volume. We further calculated the single-nucleotide polymorphism (SNP)-based heritability of 12 subfields, as well as their genetic correlation with each other, with other structural brain features and with AD and schizophrenia. All outcome measures were corrected for age, sex and intracranial volume. We found 15 unique genome-wide significant loci across six subfields, of which eight had not been previously linked to the hippocampus. Top SNPs were mapped to genes associated with neuronal differentiation, locomotor behaviour, schizophrenia and AD. The volumes of all the subfields were estimated to be heritable (h2 from 0.14 to 0.27, all p < 1 × 10-16) and clustered together based on their genetic correlations compared with other structural brain features. There was also evidence of genetic overlap of subicular subfield volumes with schizophrenia. We conclude that hippocampal subfields have partly distinct genetic determinants associated with specific biological processes and traits. Taking into account this specificity may increase our understanding of hippocampal neurobiology and associated pathologies.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Hipocampo/anatomia & histologia , Hipocampo/patologia , Neuroimagem , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética , Esquizofrenia/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Criança , Pré-Escolar , Feminino , Estudo de Associação Genômica Ampla , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Esquizofrenia/diagnóstico por imagem , Adulto Jovem
3.
Nat Neurosci ; 22(10): 1617-1623, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31551603

RESUMO

Common risk factors for psychiatric and other brain disorders are likely to converge on biological pathways influencing the development and maintenance of brain structure and function across life. Using structural MRI data from 45,615 individuals aged 3-96 years, we demonstrate distinct patterns of apparent brain aging in several brain disorders and reveal genetic pleiotropy between apparent brain aging in healthy individuals and common brain disorders.


Assuntos
Envelhecimento/genética , Envelhecimento/patologia , Encefalopatias/diagnóstico por imagem , Encefalopatias/genética , Encéfalo/crescimento & desenvolvimento , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Feminino , Estudo de Associação Genômica Ampla , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/genética , Pessoa de Meia-Idade , Testes Neuropsicológicos , Esquizofrenia/genética , Esquizofrenia/patologia , Caracteres Sexuais , Adulto Jovem
4.
JAMA Psychiatry ; 76(7): 739-748, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30969333

RESUMO

Importance: Between-individual variability in brain structure is determined by gene-environment interactions, possibly reflecting differential sensitivity to environmental and genetic perturbations. Magnetic resonance imaging (MRI) studies have revealed thinner cortices and smaller subcortical volumes in patients with schizophrenia. However, group-level comparisons may mask considerable within-group heterogeneity, which has largely remained unnoticed in the literature. Objectives: To compare brain structural variability between individuals with schizophrenia and healthy controls and to test whether respective variability reflects the polygenic risk score (PRS) for schizophrenia in an independent sample of healthy controls. Design, Setting, and Participants: This case-control and polygenic risk analysis compared MRI-derived cortical thickness and subcortical volumes between healthy controls and patients with schizophrenia across 16 cohorts and tested for associations between PRS and MRI features in a control cohort from the UK Biobank. Data were collected from October 27, 2004, through April 12, 2018, and analyzed from December 3, 2017, through August 1, 2018. Main Outcomes and Measures: Mean and dispersion parameters were estimated using double generalized linear models. Vertex-wise analysis was used to assess cortical thickness, and regions-of-interest analyses were used to assess total cortical volume, total surface area, and white matter, subcortical, and hippocampal subfield volumes. Follow-up analyses included within-sample analysis, test of robustness of the PRS threshold, population covariates, outlier removal, and control for image quality. Results: A comparison of 1151 patients with schizophrenia (mean [SD] age, 33.8 [10.6] years; 68.6% male [n = 790] and 31.4% female [n = 361]) with 2010 healthy controls (mean [SD] age, 32.6 [10.4] years; 56.0% male [n = 1126] and 44.0% female [n = 884]) revealed higher heterogeneity in schizophrenia for cortical thickness and area (t = 3.34), cortical (t = 3.24) and ventricle (t range, 3.15-5.78) volumes, and hippocampal subfields (t range, 2.32-3.55). In the UK Biobank sample of 12 490 participants (mean [SD] age, 55.9 [7.5] years; 48.2% male [n = 6025] and 51.8% female [n = 6465]), higher PRS was associated with thinner frontal and temporal cortices and smaller left CA2/3 (t = -3.00) but was not significantly associated with dispersion. Conclusions and Relevance: This study suggests that schizophrenia is associated with substantial brain structural heterogeneity beyond the mean differences. These findings may reflect higher sensitivity to environmental and genetic perturbations in patients, supporting the heterogeneous nature of schizophrenia. A higher PRS was associated with thinner frontotemporal cortices and smaller hippocampal subfield volume, but not heterogeneity. This finding suggests that brain variability in schizophrenia results from interactions between environmental and genetic factors that are not captured by the PRS. Factors contributing to heterogeneity in frontotemporal cortices and hippocampus are key to furthering our understanding of how genetic and environmental factors shape brain biology in schizophrenia.


Assuntos
Encéfalo/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Substância Branca/diagnóstico por imagem , Adulto , Estudos de Casos e Controles , Feminino , Interação Gene-Ambiente , Estudos de Associação Genética , Humanos , Imageamento por Ressonância Magnética , Masculino , Herança Multifatorial , Tamanho do Órgão/fisiologia , Adulto Jovem
6.
Brain Imaging Behav ; 12(3): 640-652, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28444556

RESUMO

The thalamus is a highly connected subcortical structure that relays and integrates sensory and cortical information, which is critical for coherent and accurate perceptual awareness and cognition. Thalamic dysfunction is a classical finding in schizophrenia (SZ), and resting-state functional MRI has implicated somatomotor and frontal lobe thalamic dysconnectivity. However, it remains unclear whether these findings generalize to different psychotic disorders, are confined to specific thalamic sub-regions, and how they relate to structural thalamic alterations. Within-thalamic and thalamo-cortical functional connectivity was assessed using resting-state functional MRI data obtained from patients with SZ (n = 96), bipolar disorder (BD, n = 57), and healthy controls (HC, n = 280). Further, we used thalamic sub-regions as seeds to investigate specific cortical connectivity patterns, and performed structural analyses of thalamic volume and shape. Results showed reduced within-thalamic connectivity and thalamo-frontoparietal coupling in SZ and increased thalamo-somatomotor connectivity in BD. One thalamic sub-region showed increased sensory connectivity in SZ and eight sub-regions showed reductions with frontal and posterior areas. Reduced gray matter and shape abnormalities were found in frontal-projecting regions in both SZ and BD, but did not seem to explain reduced functional connectivity. Aberrant thalamo-cortical connectivity patterns in SZ and BD supports the notion of the thalamus as a key structure in the functional connectome across the psychosis spectrum, and the frontal and somatomotor anatomical distribution is in line with the characteristic cognitive and perceptual symptoms in psychotic disorders.


Assuntos
Transtorno Bipolar/fisiopatologia , Córtex Cerebral/fisiopatologia , Esquizofrenia/fisiopatologia , Tálamo/fisiopatologia , Adulto , Transtorno Bipolar/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Conectoma , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiopatologia , Descanso , Esquizofrenia/diagnóstico por imagem , Tálamo/diagnóstico por imagem
7.
Sci Rep ; 6: 37212, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27853244

RESUMO

Heart rate variability (HRV) has become central to biobehavioral models of self-regulation and interpersonal interaction. While research on healthy populations suggests changes in respiratory frequency do not affect short-term HRV, thus negating the need to include respiratory frequency as a HRV covariate, the nature of the relationship between these two variables in psychiatric illness is poorly understood. Therefore, the aim of this study was to investigate the association between HRV and respiratory frequency in a sample of individuals with severe psychiatric illness (n = 55) and a healthy control comparison group (n = 149). While there was no significant correlation between HF-HRV and respiration in the control group, we observed a significant negative correlation in the psychiatric illness group, with a 94.1% probability that these two relationships are different. Thus, we provide preliminary evidence suggesting that HF-HRV is related to respiratory frequency in severe mental illness, but not in healthy controls, suggesting that HRV research in this population may need to account for respiratory frequency. Future work is required to better understand the complex relationship between respiration and HRV in other clinical samples with psychiatric diseases.


Assuntos
Frequência Cardíaca , Transtornos Mentais/fisiopatologia , Taxa Respiratória , Descanso , Adulto , Feminino , Humanos , Masculino , Índice de Gravidade de Doença
8.
Neuroimage Clin ; 12: 389-96, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27622135

RESUMO

BACKGROUND: Schizophrenia is associated with cognitive impairment and brain network dysconnectivity. Recent efforts have explored brain circuits underlying cognitive dysfunction in schizophrenia and documented altered activation of large-scale brain networks, including the task-positive network (TPN) and the task-negative default mode network (DMN) in response to cognitive demands. However, to what extent TPN and DMN dysfunction reflect overlapping mechanisms and are dependent on cognitive state remain to be determined. METHODS: In the current study, we investigated the recruitment of TPN and DMN using independent component analysis in patients with schizophrenia spectrum disorders (n = 29) and healthy controls (n = 21) during two different executive tasks probing planning/problem-solving and spatial working memory. RESULTS: We found reduced load-dependent DMN deactivation across tasks in patients compared to controls. Furthermore, we observed only moderate associations between the TPN and DMN activation across groups, implying that the two networks reflect partly independent mechanisms. Additionally, whereas TPN activation was associated with task performance in both tasks, no such associations were found for DMN. CONCLUSION: These results support a general load-dependent DMN dysfunction in schizophrenia spectrum disorder across two demanding executive tasks that is not merely an epiphenomenon of cognitive dysfunction.


Assuntos
Transtornos Cognitivos/diagnóstico por imagem , Transtornos Cognitivos/etiologia , Função Executiva/fisiologia , Modelos Neurológicos , Vias Neurais/diagnóstico por imagem , Esquizofrenia/complicações , Adulto , Análise de Variância , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/etiologia , Rede Nervosa/diagnóstico por imagem , Testes Neuropsicológicos , Escalas de Graduação Psiquiátrica , Tempo de Reação/fisiologia , Adulto Jovem
9.
Schizophr Bull ; 41(3): 736-43, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25392519

RESUMO

Schizophrenia is a highly heritable and polygenic disease, and identified common genetic variants have shown weak individual effects. Many studies have reported altered working memory (WM)-related brain activation in schizophrenia, preferentially in the frontal lobe. Such differences in brain activations could reflect inherited alterations possibly involved in the disease etiology, or rather secondary disease-related mechanisms. The use of polygenic risk scores (PGRS) based on a large number of risk polymorphisms with small effects is a valuable approach to examine the effect of cumulative genetic risk on brain functioning. This study examined the impact of cumulative genetic risk for schizophrenia on WM-related brain activations, assessed with functional magnetic resonance imaging. For each participant (63 schizophrenia patients and 118 healthy controls), we calculated a PGRS for schizophrenia based on 18 862 single-nucleotide polymorphism in a large multicenter genome-wide association study including 9146 schizophrenia patients and 12 111 controls, performed by the Psychiatric Genomics Consortium. As expected, the PGRS was significantly higher in patients compared with healthy controls. Further, the PGRS was related to differences in frontal lobe brain activation between high and low WM demand. Specifically, even in absence of main effects of diagnosis, increased PGRS was associated with decreased activation difference in the right middle-superior prefrontal cortex (BA 10/11) and the right inferior frontal gyrus (BA 45). This effect was seen in both cases and controls, and was not influenced by sex, age, or task performance. The findings support the notion of dysregulation of frontal lobe functioning as an inherited vulnerability factor in schizophrenia.


Assuntos
Memória de Curto Prazo/fisiologia , Córtex Pré-Frontal/fisiopatologia , Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Adulto , Feminino , Estudo de Associação Genômica Ampla , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...