Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol Rep ; 10(1): 33-39, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29124879

RESUMO

Several thousands of tank bromeliads per hectare of neotropical forest create a unique wetland ecosystem that emits substantial amounts of CH4 . Tank bromeliads growing in the forest canopy (functional type-II tank bromeliads) were found to emit more CH4 than tank bromeliads growing on the forest floor (functional type-I tank bromeliads) but the reasons for this difference and the underlying microbial CH4 -cycling processes have not been studied. Therefore, we characterized archaeal communities in bromeliad tanks of the two different functional types in a neotropical montane forest of southern Ecuador using terminal-restriction fragment length polymorphism (T-RFLP) and performed tank-slurry incubations to measure CH4 production potential, stable carbon isotope fractionation and pathway of CH4 formation. The archaeal community composition was dominated by methanogens and differed between bromeliad functional types. Hydrogenotrophic Methanomicrobiales were the dominant methanogens and hydrogenotrophic methanogenesis was the dominant methanogenic pathway among all bromeliads. The relative abundance of aceticlastic Methanosaetaceae and the relative contribution of aceticlastic methanogenesis increased in type-I tank bromeliads probably due to more oxic conditions in type-I than in type-II bromeliads leading to the previously observed lower in situ CH4 emissions from type-I tank bromeliads but to higher CH4 production potentials in type-I tank bromeliad slurries.


Assuntos
Archaea/classificação , Archaea/metabolismo , Bromeliaceae/microbiologia , Crescimento Quimioautotrófico , Hidrogênio/metabolismo , Metano/metabolismo , Áreas Alagadas , Archaea/genética , Bromeliaceae/anatomia & histologia , Bromeliaceae/química , Dióxido de Carbono/metabolismo , DNA Arqueal/genética , Equador , Euryarchaeota/classificação , Euryarchaeota/genética , Euryarchaeota/metabolismo , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética
2.
Microb Ecol ; 73(4): 751-754, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27924401

RESUMO

We studied the propensity of the tank bromeliad Werauhia gladioliflora to emit the greenhouse gas nitrous oxide (N2O) at current and at increased N deposition levels in the range of predicted future scenarios. Potential production rates and net accumulation of N2O from tank substrate corresponded to N availability. N2O was produced in excess at all N levels due to a low level of N2O reductase activity which agreed well with a low abundance of N2O reducers compared to nitrite reducers. Transcriptional activation, however, indicated that expression of denitrification genes may be enhanced with increasing N supply eventually leading to more efficient N2O turnover with potential for adaptation of denitrifier communities to higher N levels. Our findings indicate that tank bromeliads may constitute a novel source of N2O in Neotropical forest canopies but further studies are required to understand the size and significance of in situ N2O fluxes from tank bromeliads to the environment.


Assuntos
Bromeliaceae/metabolismo , Óxido Nitroso/metabolismo , Bromeliaceae/genética , Desnitrificação/genética , Meio Ambiente , Florestas , Nitritos/metabolismo , Nitrogênio/metabolismo
3.
FEMS Microbiol Ecol ; 91(2): 1-10, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25764549

RESUMO

Tank bromeliads are highly abundant epiphytes in neotropical forests and form a unique canopy wetland ecosystem which is involved in the global methane cycle. Although the tropical climate is characterized by high annual precipitation, the plants can face periods of restricted water. Thus, we hypothesized that water is an important controller of the archaeal community composition and the pathway of methane formation in tank bromeliads. Greenhouse experiments were established to investigate the resident and active archaeal community targeting the 16S rDNA and 16S rRNA in the tank slurry of bromeliads at three different moisture levels. Archaeal community composition and abundance were determined using terminal restriction fragment length polymorphism and quantitative PCR. Release of methane and its stable carbon isotopic signature were determined in a further incubation experiment under two moisture levels. The relative abundance of aceticlastic Methanosaetaceae increased up to 34% and that of hydrogenotrophic Methanobacteriales decreased by more than half with decreasing moisture. Furthermore, at low moisture levels, methane production was up to 100-fold lower (≤0.1-1.1 nmol gdw(-1) d(-1)) than under high moisture levels (10-15 nmol gdw(-1) d(-1)). The rapid response of the archaeal community indicates that the pathway of methane formation in bromeliad tanks may indeed be strongly susceptible to periods of drought in neotropical forest canopies.


Assuntos
Metano/metabolismo , Methanobacteriales/metabolismo , Methanosarcinales/metabolismo , Áreas Alagadas , Carbono/metabolismo , Florestas , Metano/biossíntese , Methanobacteriales/genética , Methanosarcinales/genética , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Clima Tropical , Água
4.
Syst Appl Microbiol ; 37(8): 570-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25466922

RESUMO

Sampling strategy is important for unbiased analysis of the characteristics of microbial communities in the environment. During field work it is not always possible to analyze fresh samples immediately or store them frozen. Therefore, the effect of short-term storage temperature was investigated on the abundance and composition of bacterial, archaeal and denitrifying communities in environmental samples from two different sampling sites. Oxic forest soil and anoxic pond sediment were investigated by measuring microbial abundance (DNA) and transcriptional activity (RNA). Prior to investigating the effect of storage temperature, samples were immediately analyzed, in order to represent the original situation in the habitat. The effect of storage temperature was then determined after 11 days at different low temperatures (room temperature, 4 °C, −22 °C and −80 °C). Community profiling using terminal restriction fragment length polymorphism (T-RFLP) showed no significant differences between the immediately analyzed reference sample and the samples stored at different incubation temperatures, both for DNA and RNA extracts. The abundance of microbial communities was determined using quantitative PCR and it also revealed a stable community size at all temperatures tested. By contrast, incubation at an elevated temperature (37 °C) resulted in changed bacterial community composition. In conclusion, short-term storage, even at room temperature, did not affect microbial community composition, abundance and transcriptional activity in aerated forest soil and anoxic pond sediment.


Assuntos
Sedimentos Geológicos/microbiologia , Consórcios Microbianos/genética , Consórcios Microbianos/fisiologia , Temperatura , Archaea/classificação , Bactérias/classificação , Bacteriologia , DNA Arqueal/análise , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/análise , DNA Bacteriano/química , DNA Bacteriano/genética , Lagoas/microbiologia , RNA Ribossômico 16S/genética , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...