Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 82(19): 8169-75, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20879802

RESUMO

In recent years, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has become a powerful tool for the study of synthetic polymers although its mechanism is still not understood in detail. Sample preparation plays the key role in obtaining reliable MALDI mass spectra, in particular, the proper choice of matrix, cationization reagent, and solvent. There is still no general sample preparation protocol for MALDI analysis of synthetic polymers. For known synthetic polymers, such as polystyrenes and other frequently investigated polymers, application tables in review articles might be a guide for selecting a MALDI matrix, cationization reagent, and solvent. For unknown polymers (polymers which were not analyzed by MALDI-TOF MS before but whose structures are in part known from the manufacturing process and from NMR analysis as well), the selection of matrix and solvent is based upon the polarity-similarity principle. Chemometric methods provide a useful tool for the investigation of sample preparation because huge data sets can be evaluated in short time, that is, for extracting relevant information and for classification of samples, as well. Furthermore, chemometrics provide a suitable way for the selection of a proper matrix, cationization reagent, and solvent. In this paper, a prediction model is presented using the partial least-squares (PLS) regression. By applying the model, the suitability of appropriate (nontested) combinations (matrix, cationization reagent, solvent) can be predicted for a certain synthetic polymer based upon the investigation of a few combinations. This model may help find suitable combinations in a short time and serve as a starting point for the investigation of unknown polymers. Results are exemplary presented for polystyrene PS2850.

2.
J Am Soc Mass Spectrom ; 21(11): 1870-5, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20685132

RESUMO

It is well known that the mixing ratio affects the molar mass distribution of synthetic polymers determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Surely, the molar mixing ratio determines whether a mass spectrum will be obtained or not. However, depending on the mass range, several effects such as multimer formation occur, which might be a source of errors in molar mass distribution calculations. In this study, the effect of mixing ratio was investigated for several synthetic polymers, including polystyrene (PS), poly(dimethylsiloxane) (PDMS), poly(ethylene glycol) (PEG), and poly(methyl methacrylate) (PMMA) using statistical designs of experiments. The 2(3) full factorial design was found to be suitable in the study of more than 1000 samples. The obtained MALDI mass spectra as well as the ANOVA statistics show that the mixing ratio affects the molar mass distribution. The optimal mixing ratio for a defined synthetic polymer depends on the studied combination (matrix, cationization reagent, solvent).

3.
Rapid Commun Mass Spectrom ; 24(16): 2439-44, 2010 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-20658683

RESUMO

The principle relating to the selection of a proper matrix, cationization reagent, and solvent for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of synthetic polymers is still a topic of research. In this work we focused on the selection of a suitable MALDI solvent. Polystyrene PS7600 and poly(ethylene glycol) PEG4820 were analyzed by MALDI-TOF MS using various solvents which were selected based on the Hansen solubility parameter system. For polystyrene (PS), dithranol was used as the matrix and silver trifluoroacetate as the cationization reagent whereas, for poly(ethylene glycol) (PEG), the combination of 2,5-dihydroxybenzoic acid and sodium trifluoroacetate was used for all experiments. When employing solvents which dissolve PS and PEG, reliable MALDI mass spectra were obtained while samples in non-solvents (solvents which are not able to dissolve the polymer) failed to provide spectra. It seems that the solubility of the matrix and the cationization reagent are less important than the polymer solubility.

4.
Colloids Surf B Biointerfaces ; 64(2): 275-83, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18346882

RESUMO

The aim of the present study was to evaluate the suitability of cellulose-based scaffolds coated with pure sodium silicate gel and sodium silicate gels accumulated with different concentrations of the bisphosphonate pamidronate as scaffolds for attachment, proliferation and differentiation of human fetal osteoblasts (hFOB 1.19). Human osteoblasts were cultured in vitro for a period up to 14 days on different cellulose scaffolds. Unmodified and sodium silicate coated cellulose scaffolds were used as control. Two surface-coated modifications of cellulose were applied. The scaffolds were coated in a modified two-step dip coating process with pure sodium silicate gel and pamidronate enriched sodium silicate gel, respectively. In order to investigate the influence of the pamidronate, concentrations of 0.667 mg Na-pamidronate/ml sodium silicate solution, 0.333 mg Na-pamidronate/ml sodium silicate solution and 3.33 x 10(-3) mg Na-pamidronate/ml sodium silicate solution were used for the coating process. Cell proliferation, vitality and attachment were examined by means of cell counting, WST-1 test, fluorescence and scanning electron microscopy. The relative grade of differentiation of hFOB cells was examined by using quantitative real-time polymerase chain reaction (qRT-PCR) analysis for the gene expression of alkaline phosphatase and osteocalcin. Proliferation and differentiation of human osteoblasts was enhanced by the sodium silicate coatings accumulated with pamidronate compared to pure sodium silicate coatings. There was a reciprocal correlation of vitality with the concentration of pamidronate. The highest vitality was found on surfaces with the lowest pamidronate accumulation. Alkaline phosphatase, an early differentiation marker, was overexpressed after 7 days in cells on all pamidronate-containing surfaces (up to 350% compared to untreated cellulose). Osteocalcin, a late differentiation marker, was overexpressed after 14 days in cells on all coated surfaces (up to 300,000% compared to untreated cellulose). The results indicate that due to the modified coating procedure a homogeneous coating and thus, an enhancement of cell attachment and subsequent cellular functions can be achieved. Low concentrations of pamidronate seem to have a relevant effect on cell proliferation and vitality and, therefore, can be recommended for the improvement of the properties of a biomaterial.


Assuntos
Celulose/química , Materiais Revestidos Biocompatíveis/química , Difosfonatos/farmacologia , Osteoblastos/efeitos dos fármacos , Alicerces Teciduais/química , Fosfatase Alcalina/metabolismo , Biomarcadores/metabolismo , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Celulose/ultraestrutura , Difosfonatos/metabolismo , Relação Dose-Resposta a Droga , Feto/citologia , Feto/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Humanos , Técnicas In Vitro , Osteoblastos/metabolismo , Osteoblastos/fisiologia , Osteoblastos/ultraestrutura , Osteocalcina/genética , Osteocalcina/metabolismo , Pamidronato , Silicatos/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...