Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Redox Biol ; 14: 82-87, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28886484

RESUMO

Pharmacological doses (> 1mM) of ascorbate (a.k.a., vitamin C) have been shown to selectively kill cancer cells through a mechanism that is dependent on the generation of H2O2 at doses that are safely achievable in humans using intravenous administration. The process by which ascorbate oxidizes to form H2O2 is thought to be mediated catalytically by redox active metal ions such as iron (Fe). Because intravenous iron sucrose is often administered to colon cancer patients to help mitigate anemia, the current study assessed the ability of pharmacological ascorbate to kill colon cancer cells in the presence and absence of iron sucrose. In vitro survival assays showed that 10mM ascorbate exposure (2h) clonogenically inactivated 40-80% of exponentially growing colon cancer cell lines (HCT116 and HT29). When the H2O2 scavenging enzyme, catalase, was added to the media, or conditionally over-expressed using a doxycycline inducible vector, the toxicity of pharmacological ascorbate was significantly blunted. When colon cancer cells were treated in the presence or absence of 250µM iron sucrose, then rinsed, and treated with 10mM ascorbate, the cells demonstrated increased levels of labile iron that resulted in significantly increased clonogenic cell killing, compared to pharmacological ascorbate alone. Interestingly, when colon cancer cells were treated with iron sucrose for 1h and then 10mM ascorbate was added to the media in the continued presence of iron sucrose, there was no enhancement of toxicity despite similar increases in intracellular labile iron. The combination of iron chelators, deferoxamine and diethylenetriaminepentaacetic acid, significantly inhibited the toxicity of either ascorbate alone or ascorbate following iron sucrose. These observations support the hypothesis that increasing intracellular labile iron pools, using iron sucrose, can be used to increase the toxicity of pharmacological ascorbate in human colon cancer cells by a mechanism involving increased generation of H2O2.


Assuntos
Ácido Ascórbico/toxicidade , Compostos Férricos/farmacologia , Ácido Glucárico/farmacologia , Ferro/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Catalase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Desferroxamina/farmacologia , Óxido de Ferro Sacarado , Células HCT116 , Células HT29 , Humanos , Peróxido de Hidrogênio/metabolismo , Quelantes de Ferro/farmacologia
3.
Clin Cancer Res ; 19(14): 3905-13, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23743570

RESUMO

PURPOSE: Ketogenic diets are high in fat and low in carbohydrates as well as protein which forces cells to rely on lipid oxidation and mitochondrial respiration rather than glycolysis for energy metabolism. Cancer cells (relative to normal cells) are believed to exist in a state of chronic oxidative stress mediated by mitochondrial metabolism. The current study tests the hypothesis that ketogenic diets enhance radio-chemo-therapy responses in lung cancer xenografts by enhancing oxidative stress. EXPERIMENTAL DESIGN: Mice bearing NCI-H292 and A549 lung cancer xenografts were fed a ketogenic diet (KetoCal 4:1 fats: proteins+carbohydrates) and treated with either conventionally fractionated (1.8-2 Gy) or hypofractionated (6 Gy) radiation as well as conventionally fractionated radiation combined with carboplatin. Mice weights and tumor size were monitored. Tumors were assessed for immunoreactive 4-hydroxy-2-nonenal-(4HNE)-modified proteins as a marker of oxidative stress as well as proliferating cell nuclear antigen (PCNA) and γH2AX as indices of proliferation and DNA damage, respectively. RESULTS: The ketogenic diets combined with radiation resulted in slower tumor growth in both NCI-H292 and A549 xenografts (P < 0.05), relative to radiation alone. The ketogenic diet also slowed tumor growth when combined with carboplatin and radiation, relative to control. Tumors from animals fed a ketogenic diet in combination with radiation showed increases in oxidative damage mediated by lipid peroxidation as determined by 4HNE-modified proteins as well as decreased proliferation as assessed by decreased immunoreactive PCNA. CONCLUSIONS: These results show that a ketogenic diet enhances radio-chemo-therapy responses in lung cancer xenografts by a mechanism that may involve increased oxidative stress.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/terapia , Dieta Cetogênica , Neoplasias Pulmonares/terapia , Estresse Oxidativo , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Terapia Combinada , Fracionamento da Dose de Radiação , Feminino , Humanos , Cetonas/metabolismo , Peroxidação de Lipídeos , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Nus , Antígeno Nuclear de Célula em Proliferação/metabolismo , Tolerância a Radiação , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...