Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Blood Adv ; 7(16): 4492-4504, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37327114

RESUMO

The functionality of natural killer (NK) cells is tuned during education and is associated with remodeling of the lysosomal compartment. We hypothesized that genetic variation in killer cell immunoglobulin-like receptor (KIR) and HLA, which is known to influence the functional strength of NK cells, fine-tunes the payload of effector molecules stored in secretory lysosomes. To address this possibility, we performed a high-resolution analysis of KIR and HLA class I genes in 365 blood donors and linked genotypes to granzyme B loading and functional phenotypes. We found that granzyme B levels varied across individuals but were stable over time in each individual and genetically determined by allelic variation in HLA class I genes. A broad mapping of surface receptors and lysosomal effector molecules revealed that DNAM-1 and granzyme B levels served as robust metric of the functional state in NK cells. Variation in granzyme B levels at rest was tightly linked to the lytic hit and downstream killing of major histocompatibility complex-deficient target cells. Together, these data provide insights into how variation in genetically hardwired receptor pairs tunes the releasable granzyme B pool in NK cells, resulting in predictable hierarchies in global NK cell function.


Assuntos
Células Matadoras Naturais , Receptores KIR , Granzimas/genética , Granzimas/metabolismo , Receptores KIR/genética , Receptores KIR/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Genótipo
2.
Lab Chip ; 22(11): 2107-2121, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35470832

RESUMO

Miniaturization of cell culture substrates enables controlled analysis of living cells in confined micro-scale environments. This is particularly suitable for imaging individual cells over time, as they can be monitored without escaping the imaging field-of-view (FoV). Glass materials are ideal for most microscopy applications. However, with current methods used in life sciences, glass microfabrication is limited in terms of either freedom of design, quality, or throughput. In this work, we introduce laser-induced deep etching (LIDE) as a method for producing glass microwell arrays for live single cell imaging assays. We demonstrate novel microwell arrays with deep, high-aspect ratio wells that have rounded, dimpled or flat bottom profiles in either single-layer or double-layer glass chips. The microwells are evaluated for microscopy-based analysis of long-term cell culture, clonal expansion, laterally organized cell seeding, subcellular mechanics during migration and immune cell cytotoxicity assays of both adherent and suspension cells. It is shown that all types of microwells can support viable cell cultures and imaging with single cell resolution, and we highlight specific benefits of each microwell design for different applications. We believe that high-quality glass microwell arrays enabled by LIDE provide a great option for high-content and high-resolution imaging-based live cell assays with a broad range of potential applications within life sciences.


Assuntos
Técnicas de Cultura de Células , Microtecnologia , Técnicas de Cultura de Células/métodos , Vidro , Lasers , Microtecnologia/métodos , Miniaturização
3.
Sci Signal ; 14(684)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035142

RESUMO

Immune synapses are large-scale, transient molecular assemblies that serve as platforms for antigen presentation to B and T cells and for target recognition by cytotoxic T cells and natural killer (NK) cells. The formation of an immune synapse is a tightly regulated, stepwise process in which the cytoskeleton, cell surface receptors, and intracellular signaling proteins rearrange into supramolecular activation clusters (SMACs). We generated artificial immune synapses (AIS) consisting of synthetic and natural ligands for the NK cell-activating receptors LFA-1 and CD16 by microcontact printing the ligands into circular-shaped SMAC structures. Live-cell imaging and analysis of fixed human NK cells in this reductionist system showed that the spatial distribution of activating ligands influenced the formation, stability, and outcome of NK cell synapses. Whereas engagement of LFA-1 alone promoted synapse initiation, combined engagement of LFA-1 and CD16 was required for the formation of mature synapses and degranulation. Organizing LFA-1 and CD16 ligands into donut-shaped AIS resulted in fewer long-lasting, symmetrical synapses compared to dot-shaped AIS. NK cells spreading evenly over either AIS shape exhibited similar arrangements of the lytic machinery. However, degranulation only occurred in regions containing ligands that therefore induced local signaling, suggesting the existence of a late checkpoint for degranulation. Our results demonstrate that the spatial organization of ligands in the synapse can affect its outcome, which could be exploited by target cells as an escape mechanism.


Assuntos
Sinapses Imunológicas , Células Matadoras Naturais , Antígeno-1 Associado à Função Linfocitária , Receptores de IgG , Degranulação Celular , Citoesqueleto , Proteínas Ligadas por GPI , Humanos
4.
Sci Rep ; 9(1): 10672, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337806

RESUMO

Natural killer (NK) cell cytotoxicity in tissue is dependent on the ability of NK cells to migrate through the extracellular matrix (ECM) microenvironment. Traditional imaging studies of NK cell migration and cytotoxicity have utilized 2D surfaces, which do not properly reproduce the structural and mechanical cues that shape the migratory response of NK cells in vivo. Here, we have combined a microwell assay that allows long-term imaging and tracking of small, well-defined populations of NK cells with an interstitial ECM-like matrix. The assay allows for long-term imaging of NK-target cell interactions within a confined 3D volume. We found marked differences in motility between individual cells with a small fraction of the cells moving slowly and being confined to a small volume within the matrix, while other cells moved more freely. A majority of NK cells also exhibited transient variation in their motility, alternating between periods of migration arrest and movement. The assay could be used as a complement to in vivo imaging to study human NK cell heterogeneity in migration and cytotoxicity.


Assuntos
Ensaios de Migração de Leucócitos/métodos , Movimento Celular/fisiologia , Colágeno/metabolismo , Matriz Extracelular/fisiologia , Células Matadoras Naturais/fisiologia , Comunicação Celular , Humanos , Imagem com Lapso de Tempo/métodos
5.
Blood Adv ; 2(12): 1459-1469, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29941459

RESUMO

Myelodysplastic syndrome (MDS) is a clonal heterogeneous stem cell disorder driven by multiple genetic and epigenetic alterations resulting in ineffective hematopoiesis. MDS has a high frequency of immune suppressors, including myeloid-derived suppressor cells (MDSCs), that collectively result in a poor immune response. MDSCs in MDS patients express CD155 that ligates the T-cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) and delivers an inhibitory signal to natural killer (NK) cells. To mediate a productive immune response against MDS, negative regulatory checkpoints, like TIGIT, expressed on MDS NK cells must be overcome. NK cells can be directed to lyse MDS cells by bispecific killer engagers (BiKEs) that ligate CD16 on NK cells and CD33 on MDS cells. However, such CD16 × CD33 (1633) BiKEs do not induce the proliferative response in MDS NK cells needed to sustain their function. Here, we show that the addition of an NK stimulatory cytokine, interleukin-15 (IL-15), into the BiKE platform leads to productive IL-15 signaling without TIGIT upregulation on NK cells from MDS patients. Lower TIGIT expression allowed NK cells to resist MDSC inhibition. When compared with 1633 BiKE, 161533 trispecific killer engager (TriKE)-treated NK cells demonstrated superior killing kinetics associated with increased STAT5 phosphorylation. Furthermore, 161533 TriKE-treated MDS NK cells had higher proliferation and enhanced NK-cell function than 1633 BiKE-treated cells without the IL-15 linker. Collectively, our data demonstrate novel characteristics of the 161533 TriKE that support its application as an immunotherapeutic agent for MDS patients.


Assuntos
Células Matadoras Naturais/efeitos dos fármacos , Síndromes Mielodisplásicas/patologia , Células Supressoras Mieloides/patologia , Adulto , Anticorpos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Proteínas Ligadas por GPI/imunologia , Células HL-60 , Humanos , Células Matadoras Naturais/imunologia , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/imunologia , Células Supressoras Mieloides/imunologia , Receptores de IgG/imunologia , Receptores Imunológicos/metabolismo , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Células Tumorais Cultivadas , Adulto Jovem
6.
Cancer Immunol Res ; 6(4): 467-480, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29459477

RESUMO

Natural killer (NK) cells hold potential as a source of allogeneic cytotoxic effector cells for chimeric antigen receptor (CAR)-mediated therapies. Here, we explored the feasibility of transfecting CAR-encoding mRNA into primary NK cells and investigated how the intrinsic potential of discrete NK-cell subsets affects retargeting efficiency. After screening five second- and third-generation anti-CD19 CAR constructs with different signaling domains and spacer regions, a third-generation CAR with the CH2-domain removed was selected based on its expression and functional profiles. Kinetics experiments revealed that CAR expression was optimal after 3 days of IL15 stimulation prior to transfection, consistently achieving over 80% expression. CAR-engineered NK cells acquired increased degranulation toward CD19+ targets, and maintained their intrinsic degranulation response toward CD19- K562 cells. The response of redirected NK-cell subsets against CD19+ targets was dependent on their intrinsic thresholds for activation determined through both differentiation and education by killer cell immunoglobulin-like receptors (KIR) and/or CD94/NKG2A binding to self HLA class I and HLA-E, respectively. Redirected primary NK cells were insensitive to inhibition through NKG2A/HLA-E interactions but remained sensitive to inhibition through KIR depending on the amount of HLA class I expressed on target cells. Adaptive NK cells, expressing NKG2C, CD57, and self-HLA-specific KIR(s), displayed superior ability to kill CD19+, HLA low, or mismatched tumor cells. These findings support the feasibility of primary allogeneic NK cells for CAR engineering and highlight a need to consider NK-cell diversity when optimizing efficacy of cancer immunotherapies based on CAR-expressing NK cells. Cancer Immunol Res; 6(4); 467-80. ©2018 AACR.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Eletroporação , Expressão Gênica , Antígenos HLA/genética , Antígenos HLA/imunologia , Humanos , Ativação Linfocitária/imunologia , Camundongos , Subfamília C de Receptores Semelhantes a Lectina de Células NK/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Receptores KIR/antagonistas & inibidores
7.
Anaesthesist ; 66(11): 879-884, 2017 Nov.
Artigo em Alemão | MEDLINE | ID: mdl-28831503

RESUMO

MIGRATION OF AN AXILLARY PLEXUS CATHETER FRAGMENT INTO THE INTRACEREBRAL COMPARTMENT: During removal of an axillary plexus catheter used for pain therapy, the catheter was probably inadvertently and unnoticed severed together with the suture fixation. The error went unnoticed and an approximately 14 cm long catheter fragment remained in the patient. The patient complained of neck pain, nausea and vomiting 2.5 years later. A computed tomography scan of the cranium and neck region revealed a tubular foreign body with a diameter of ca. 1 mm and a length of ca. 14 cm. The foreign body was identified to be the sheared catheter fragment. In the meantime, the fragment had obviously migrated from the axilla into the intracranial compartment. The tip of the catheter was found at the ventral surface of the pons and surgical extraction was not possible. Following a futile intervention by the hospital's liability insurance and despite evidence from an expert opinion for a gross treatment error, the patient took civil legal action against the hospital. A settlement was reached and the accused hospital committed itself to pay a compensation of 200,000 € plus any additional costs.


Assuntos
Catéteres , Doenças do Sistema Nervoso Central/etiologia , Doenças do Sistema Nervoso Central/terapia , Migração de Corpo Estranho/terapia , Erros Médicos/legislação & jurisprudência , Adulto , Migração de Corpo Estranho/diagnóstico por imagem , Humanos , Responsabilidade Legal , Masculino , Náusea/etiologia , Náusea/terapia , Pescoço/diagnóstico por imagem , Cervicalgia/etiologia , Manejo da Dor/instrumentação , Ponte/diagnóstico por imagem , Tomografia Computadorizada por Raios X
8.
Front Immunol ; 7: 119, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27092139

RESUMO

Here, we report a screening platform for assessment of the cytotoxic potential of individual natural killer (NK) cells within larger populations. Human primary NK cells were distributed across a silicon-glass microchip containing 32,400 individual microwells loaded with target cells. Through fluorescence screening and automated image analysis, the numbers of NK and live or dead target cells in each well could be assessed at different time points after initial mixing. Cytotoxicity was also studied by time-lapse live-cell imaging in microwells quantifying the killing potential of individual NK cells. Although most resting NK cells (≈75%) were non-cytotoxic against the leukemia cell line K562, some NK cells were able to kill several (≥3) target cells within the 12-h long experiment. In addition, the screening approach was adapted to increase the chance to find and evaluate serial killing NK cells. Even if the cytotoxic potential varied between donors, it was evident that a small fraction of highly cytotoxic NK cells were responsible for a substantial portion of the killing. We demonstrate multiple assays where our platform can be used to enumerate and characterize cytotoxic cells, such as NK or T cells. This approach could find use in clinical applications, e.g., in the selection of donors for stem cell transplantation or generation of highly specific and cytotoxic cells for adoptive immunotherapy.

9.
A A Case Rep ; 5(12): 231-3, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26657705

RESUMO

Sudden visual loss after general anesthesia is a rare and serious complication. Unilateral visual loss can be caused by an increase in pressure in the preretinal veins with subsequent rupture and hematoma formation. Our patient most likely experienced an increase in venous pressure as a consequence of temporarily increased intrapulmonary pressures during a sustained Valsalva maneuver shortly after tracheal intubation. Although surgical correction is available, in almost all cases, no specific therapy is required because the problem completely regresses spontaneously.


Assuntos
Anestesia Geral/efeitos adversos , Hemorragia Retiniana/etiologia , Manobra de Valsalva , Transtornos da Visão/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Acuidade Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...