Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 18(1): 35, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32070354

RESUMO

BACKGROUND: Novel methods are necessary to reduce morbidity and mortality of patients suffering from infections with Pseudomonas aeruginosa. Being the most common infectious species of the Pseudomonas genus, P. aeruginosa is the primary Gram-negative etiology responsible for nosocomial infections. Due to the ubiquity and high adaptability of this species, an effective universal treatment method for P. aeruginosa infection still eludes investigators, despite the extensive research in this area. RESULTS: We report bacterial inhibition by iron-oxide (nominally magnetite) nanoparticles (NPs) alone, having a mean hydrodynamic diameter of ~ 16 nm, as well as alginate-capped iron-oxide NPs. Alginate capping increased the average hydrodynamic diameter to ~ 230 nm. We also investigated alginate-capped iron-oxide NP-drug conjugates, with a practically unchanged hydrodynamic diameter of ~ 232 nm. Susceptibility and minimum inhibitory concentration (MIC) of the NPs, NP-tobramycin conjugates, and tobramycin alone were determined in the PAO1 bacterial colonies. Investigations into susceptibility using the disk diffusion method were done after 3 days of biofilm growth and after 60 days of growth. MIC of all compounds of interest was determined after 60-days of growth, to ensure thorough establishment of biofilm colonies. CONCLUSIONS: Positive inhibition is reported for uncapped and alginate-capped iron-oxide NPs, and the corresponding MICs are presented. We report zero susceptibility to iron-oxide NPs capped with polyethylene glycol, suggesting that the capping agent plays a major role in enabling bactericidal ability in of the nanocomposite. Our findings suggest that the alginate-coated nanocomposites investigated in this study have the potential to overcome the bacterial biofilm barrier. Magnetic field application increases the action, likely via enhanced diffusion of the iron-oxide NPs and NP-drug conjugates through mucin and alginate barriers, which are characteristic of cystic-fibrosis respiratory infections. We demonstrate that iron-oxide NPs coated with alginate, as well as alginate-coated magnetite-tobramycin conjugates inhibit P. aeruginosa growth and biofilm formation in established colonies. We have also determined that susceptibility to tobramycin decreases for longer culture times. However, susceptibility to the iron-oxide NP compounds did not demonstrate any comparable decrease with increasing culture time. These findings imply that iron-oxide NPs are promising lower-cost alternatives to silver NPs in antibacterial coatings, solutions, and drugs, as well as other applications in which microbial abolition or infestation prevention is sought.


Assuntos
Alginatos/química , Antibacterianos/química , Compostos Férricos/química , Nanopartículas de Magnetita/química , Infecções por Pseudomonas/tratamento farmacológico , Tobramicina/química , Antibacterianos/farmacologia , Biofilmes , Fibrose Cística , Portadores de Fármacos/química , Desenho de Fármacos , Quimioterapia Combinada , Humanos , Campos Magnéticos , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Pseudomonas aeruginosa/efeitos dos fármacos , Prata/química , Prata/farmacologia , Propriedades de Superfície , Tobramicina/farmacologia
2.
J Nanobiotechnology ; 13: 31, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25925383

RESUMO

BACKGROUND: Luminescent semiconductor nanocrystals, also known as quantum dots (QD), possess highly desirable optical properties that account for development of a variety of exciting biomedical techniques. These properties include long-term stability, brightness, narrow emission spectra, size tunable properties and resistance to photobleaching. QD have many promising applications in biology and the list is constantly growing. These applications include DNA or protein tagging for in vitro assays, deep-tissue imaging, fluorescence resonance energy transfer (FRET), and studying dynamics of cell surface receptors, among others. Here we explored the potential of QD-mediated labeling for the purpose of tracking an intracellular protein inside live cells. RESULTS: We manufactured dihydrolipoic acid (DHLA)-capped CdSe-ZnS core-shell QD, not available commercially, and coupled them to the cell cycle regulatory protein Cyclin E. We then utilized the QD fluorescence capabilities for visualization of Cyclin E trafficking within cells of Xenopus laevis embryos in real time. CONCLUSIONS: These studies provide "proof-of-concept" for this approach by tracking QD-tagged Cyclin E within cells of developing embryos, before and during an important developmental period, the midblastula transition. Importantly, we show that the attachment of QD to Cyclin E did not disrupt its proper intracellular distribution prior to and during the midblastula transition. The fate of the QD after cyclin E degradation following the midblastula transition remains unknown.


Assuntos
Ciclina E/análise , Pontos Quânticos/química , Xenopus laevis/embriologia , Animais , Ciclina E/genética , Ciclina E/metabolismo , Embrião não Mamífero/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histidina/genética , Microscopia Eletrônica de Transmissão , Imagem Molecular/instrumentação , Imagem Molecular/métodos , Pontos Quânticos/análise , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sulfetos , Ácido Tióctico/análogos & derivados , Ácido Tióctico/química , Compostos de Zinco
3.
Nanomaterials (Basel) ; 2(2): 134-146, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-28348300

RESUMO

Magnetic nanocrystals have been investigated extensively in the past several years for several potential applications, such as information technology, MRI contrast agents, and for drug conjugation and delivery. A specific property of interest in biomedicine is magnetic hyperthermia-an increase in temperature resulting from the thermal energy released by magnetic nanocrystals in an external alternating magnetic field. Iron oxide nanocrystals of various sizes and morphologies were synthesized and tested for specific losses (heating power) using frequencies of 111.1 kHz and 629.2 kHz, and corresponding magnetic field strengths of 9 and 25 mT. Polymorphous nanocrystals as well as spherical nanocrystals and nanowires in paramagnetic to ferromagnetic size range exhibited good heating power. A remarkable 30 °C temperature increase was observed in a nanowire sample at 111 kHz and magnetic field of 25 mT (19.6 kA/m), which is very close to the typical values of 100 kHz and 20 mT used in medical treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...