Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(21): 10868-10883, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38756103

RESUMO

Colloid transport and retention in porous media are critical processes influencing various Earth science applications, from groundwater remediation to enhanced oil recovery. These phenomena become particularly complex in the confined spaces of nanoporous media, where strong boundary layer effects and nanoconfinement significantly alter colloid behavior. In this work, we use particle dynamics models to simulate colloid transport and retention processes in bicontinuous nanoporous (BNP) media under pressure gradients. By utilizing particle-based models, we track the movement of each colloid and elucidate the underlying colloid retention mechanisms. Under unfavorable attachment conditions, the results reveal two colloid retention mechanisms: physical straining and trapping in low-flow zone. Furthermore, we investigate the effects of critical factors including colloid volume fraction, d, pressure difference, ΔP, interaction between colloids and BNP media, Ec-p, and among colloids, Ec-c, on colloid transport. Analysis of breakthrough curves and colloid displacements demonstrates that higher values of d, lower values of ΔP, and strong Ec-p attractions significantly increase colloid retention, which further lead to colloid clogging and jamming. In contrast, Ec-c has minimal impact on colloid transport due to the limited colloid-colloid interaction in nanoporous channels. This work provides critical insights into the fundamental factors governing colloid transport and retention within stochastic nanoporous materials.

2.
J Phys Chem Lett ; 13(43): 10230-10236, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36300798

RESUMO

Nonadiabatic quantum molecular dynamics is used to investigate the evolution of GeTe photoexcited states. Results reveal a photoexcitation-induced picosecond nonthermal path for the loss of long-range order. A valence electron excitation threshold of 4% is found to trigger local disorder by switching Ge atoms from octahedral to tetrahedral sites and promoting Ge-Ge bonding. The resulting loss of long-range order for a higher valence electron excitation fraction is achieved without fulfilling the Lindemann criterion for melting, therefore utilizing a nonthermal path. The photoexcitation-induced structural disorder is accompanied by charge transfer from Te to Ge, Ge-Te bonding-to-antibonding, and Ge-Ge antibonding-to-bonding change, triggering Ge-Te bond breaking and promoting the formation of Ge-Ge wrong bonds. These results provide an electronic-structure basis to understand the photoexcitation-induced ultrafast changes in the structure and properties of GeTe and other phase-change materials.

3.
J Chem Phys ; 157(4): 044105, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35922358

RESUMO

Aramid fibers composed of poly(p-phenylene terephthalamide) (PPTA) polymers are attractive materials due to their high strength, low weight, and high shock resilience. Even though they have widely been utilized as a basic ingredient in Kevlar, Twaron, and other fabrics and applications, their intrinsic behavior under intense shock loading is still to be understood. In this work, we characterize the anisotropic shock response of PPTA crystals by performing reactive molecular dynamics simulations. Results from shock loading along the two perpendicular directions to the polymer backbones, [100] and [010], indicate distinct shock release mechanisms that preserve and destroy the hydrogen bond network. Shocks along the [100] direction for particle velocity Up < 2.46 km/s indicate the formation of a plastic regime composed of shear bands, where the PPTA structure is planarized. Shocks along the [010] direction for particle velocity Up < 2.18 km/s indicate a complex response regime, where elastic compression shifts to amorphization as the shock is intensified. While hydrogen bonds are mostly preserved for shocks along the [100] direction, hydrogen bonds are continuously destroyed with the amorphization of the crystal for shocks along the [010] direction. Decomposition of the polymer chains by cross-linking is triggered at the threshold particle velocity Up = 2.18 km/s for the [010] direction and Up = 2.46 km/s for the [100] direction. These atomistic insights based on large-scale simulations highlight the intricate and anisotropic mechanisms underpinning the shock response of PPTA polymers and are expected to support the enhancement of their applications.

4.
Langmuir ; 37(51): 14866-14877, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34902977

RESUMO

In this work, we employ many-body dissipative particle dynamics (mDPD) simulations to investigate the fluid flow process through bicontinuous nanoporous media, which are representative models for a broad class of nanoporous materials. The mDPD formulation includes attractive and repulsive interactions describing accurately fluid-fluid and fluid-solid interactions. As a mesoscale simulation method, mDPD can bridge the length and time scale gap between continuum and atomistic simulations. The bicontinuous nanoporous models are constructed considering a defined morphology, the porosity level, and varying pore sizes in the range from 3.41 to 13.63 nm. All models have a 0.65 porosity level and the same topology. The models provide a stochastic description of the morphology and pore size distribution and allow for a direct investigation of the dependence of permeability on the average pore size. The stationary nanoporous models are filled with fluid particles, and flow is induced by the action of confining pistons. Simulation results, obtained by imposing different pressure differences on the surfaces of the nanoporous media, indicate a linear pressure drop within the nanoporous model. Regardless of the complexities and different scales of the porous media considered, the steady-state fluid flow through the nanoporous models is proportional to the pressure gradient applied, in agreement with Darcy's law. The calculated pore size dependence of permeability is well described by the Hagen-Poiseuille law, considering a single shape correction factor that accounts for the flow resistance due to the complex nanoporous morphology. This work highlights the effect of the average pore size of a complex stochastic bicontinuous nanoporous medium on fluid properties. The results indicate rather a relatively simple dependence of permeability on the average pore size. The novel method we employ to generate the stochastic bicontinuous nanoporous structure allows the control of different geometric features that can be explored in future studies.

5.
Sci Rep ; 11(1): 19246, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584145

RESUMO

Nanoglass (NG) as a new structure-tunable material has been investigated using both experiments and computational modeling. Experimentally, inert gas condensation (IGC) is commonly employed to prepare metallic glass (MG) nanoparticles that are consolidated using cold compression to generate an NG. In computational modeling, various methods have been used to generate NGs. However, due to the high computational cost involved, heretofore modeling investigations have not followed the experimental synthesis route. In this work, we use molecular dynamics simulations to generate an NG model by consolidating IGC-prepared Cu64Zr36 nanoparticles following a workflow similar to that of experiments. The resulting structure is compared with those of NGs produced following two alternative procedures previously used: direct generation employing Voronoi tessellation and consolidation of spherical nanoparticles carved from an MG sample. We focus on the characterization of the excess free volume and the Voronoi polyhedral statistics in order to identify and quantify contrasting features of the glass-glass interfaces in the three NG samples prepared using distinct methods. Results indicate that glass-glass interfaces in IGC-based NGs are thicker and display higher structural contrast with their parent MG structure. Nanoparticle-based methods display excess free volume exceeding 4%, in agreement with experiments. IGC-prepared nanoparticles, which display Cu segregation to their surfaces, generate the highest glass-glass interface excess free volume levels and the largest relative interface volume with excess free volume higher than 3%. Voronoi polyhedral analysis indicates a sharp drop in the full icosahedral motif fraction in the glass-glass interfaces in nanoparticle-based NG as compared to their parent MG.

6.
J Phys Chem Lett ; 11(23): 10242-10249, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33210918

RESUMO

Phase-change materials are of great interest for low-power high-throughput storage devices in next-generation neuromorphic computing technologies. Their operation is based on the contrasting properties of their amorphous and crystalline phases, which can be switched on the nanosecond time scale. Among the archetypal phase change materials based on Ge-Sb-Te alloys, Sb2Te3 displays a fast and energy-efficient crystallization-amorphization cycle due to its growth-dominated crystallization and low melting point. This growth-dominated crystallization contrasts with the nucleation-dominated crystallization of Ge2Sb2Te5. Here, we show that the energy required for and the time associated with the amorphization process can be further reduced by using a photoexcitation-based nonthermal path. We employ nonadiabatic quantum molecular dynamics simulations to investigate the time evolution of Sb2Te3 with 2.6, 5.2, 7.5, 10.3, and 12.5% photoexcited valence electron-hole carriers. Results reveal that the degree of amorphization increases with excitation, saturating at 10.3% excitation. The rapid amorphization originates from an instantaneous charge transfer from Te-p orbitals to Sb-p orbitals upon photoexcitation. Subsequent evolution of the excited state, within the picosecond time scale, indicates an Sb-Te bonding to antibonding transition. Concurrently, Sb-Sb and Te-Te antibonding decreases, leading to formation of wrong bonds. For photoexcitation of 7.5% valence electrons or larger, the electronic changes destabilize the crystal structure, leading to large atomic diffusion and irreversible loss of long-range order. These results highlight an ultrafast energy-efficient amorphization pathway that could be used to enhance the performance of phase change material-based optoelectronic devices.

7.
J Phys Chem B ; 123(45): 9719-9723, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31644290

RESUMO

Ab initio molecular dynamics simulations of shock loading on poly(p-phenylene terephthalamide) (PPTA) reveal stress release mechanisms based on hydrogen bond preserving structural phase transformation (SPT) and planar amorphization. The SPT is triggered by [100] shock-induced coplanarity of phenylene groups and rearrangement of sheet stacking leading to a novel monoclinic phase. Planar amorphization is generated by [010] shock-induced scission of hydrogen bonds leading to disruption of polymer sheets, and trans-to-cis conformational change of polymer chains. In contrast to the latter, the former mechanism preserves the hydrogen bonding and cohesiveness of polymer chains in the identified novel crystalline phase preserving the strength of PPTA. The interplay between hydrogen bond preserving (SPT) and nonpreserving (planar amorphization) shock release mechanisms is critical to understanding the shock performance of aramid fibers.

8.
Sci Rep ; 5: 15611, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26503114

RESUMO

In order to improve the properties of metallic glasses (MG) a new type of MG structure, composed of nanoscale grains, referred to as nanoglass (NG), has been recently proposed. Here, we use large-scale molecular dynamics (MD) simulations of tensile loading to investigate the deformation and failure mechanisms of Cu64Zr36 NG nanopillars with large, experimentally accessible, 50 nm diameter. Our results reveal NG ductility and failure by necking below the average glassy grain size of 20 nm, in contrast to brittle failure by shear band propagation in MG nanopillars. Moreover, the results predict substantially larger ductility in NG nanopillars compared with previous predictions of MD simulations of bulk NG models with columnar grains. The results, in excellent agreement with experimental data, highlight the substantial enhancement of plasticity induced in experimentally relevant MG samples by the use of nanoglass architectures and point out to exciting novel applications of these materials.

9.
Phys Chem Chem Phys ; 16(46): 25515-22, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25347301

RESUMO

A class of macromolecules based on the architecture of the well-known fullerenes is theoretically investigated. The building blocks used to geometrically construct these molecules are the two dimensional structures: porous graphene and biphenylene-carbon. Density functional-based tight binding methods as well as reactive molecular dynamics methods are applied to study the electronic and structural properties of these molecules. Our calculations predict that these structures can be stable up to temperatures of 2500 K. The atomization energies of carbon structures are predicted to be in the range of 0.45 eV per atom to 12.11 eV per atom (values relative to the C60 fullerene), while the hexagonal boron nitride analogues have atomization energies between -0.17 eV per atom and 12.01 eV per atom (compared to the B12N12 fullerene). Due to their high porosity, these structures may be good candidates for gas storage and/or molecular encapsulation.

10.
Phys Rev Lett ; 96(6): 065502, 2006 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-16606007

RESUMO

Atomistic mechanisms of fracture accompanying structural phase transformation (SPT) in AlN ceramic under hypervelocity impact are investigated using a 209 x 10(6) atom molecular-dynamics simulation. The shock wave generated by the impact splits into an elastic wave and a slower SPT wave that transforms the wurtzite structure into the rocksalt phase. The interaction between the reflected elastic wave and the SPT wave front generates nanovoids and dislocations into the wurtzite phase. Nanovoids coalesce into mode I cracks while dislocations give rise to kink bands and mode II cracking.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...