Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 11(12): 3921-3928, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36473701

RESUMO

Modeling in systems and synthetic biology relies on accurate parameter estimates and predictions. Accurate model calibration relies, in turn, on data and on how well suited the available data are to a particular modeling task. Optimal experimental design (OED) techniques can be used to identify experiments and data collection procedures that will most efficiently contribute to a given modeling objective. However, implementation of OED is limited by currently available software tools that are not well suited for the diversity of nonlinear models and non-normal data commonly encountered in biological research. Moreover, existing OED tools do not make use of the state-of-the-art numerical tools, resulting in inefficient computation. Here, we present the NLoed software package and demonstrate its use with in vivo data from an optogenetic system in Escherichia coli. NLoed is an open-source Python library providing convenient access to OED methods, with particular emphasis on experimental design for systems biology research. NLoed supports a wide variety of nonlinear, multi-input/output, and dynamic models and facilitates modeling and design of experiments over a wide variety of data types. To support OED investigations, the NLoed package implements maximum likelihood fitting and diagnostic tools, providing a comprehensive modeling workflow. NLoed offers an accessible, modular, and flexible OED tool set suited to the wide variety of experimental scenarios encountered in systems biology research. We demonstrate NLoed's capabilities by applying it to experimental design for characterization of a bacterial optogenetic system.


Assuntos
Projetos de Pesquisa , Biologia de Sistemas , Biologia de Sistemas/métodos , Modelos Biológicos , Software , Biologia Sintética , Escherichia coli/genética
2.
PLoS Comput Biol ; 18(11): e1010695, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36409776

RESUMO

The field of optimal experimental design uses mathematical techniques to determine experiments that are maximally informative from a given experimental setup. Here we apply a technique from artificial intelligence-reinforcement learning-to the optimal experimental design task of maximizing confidence in estimates of model parameter values. We show that a reinforcement learning approach performs favourably in comparison with a one-step ahead optimisation algorithm and a model predictive controller for the inference of bacterial growth parameters in a simulated chemostat. Further, we demonstrate the ability of reinforcement learning to train over a distribution of parameters, indicating that this approach is robust to parametric uncertainty.


Assuntos
Inteligência Artificial , Projetos de Pesquisa , Reforço Psicológico , Algoritmos , Biologia
3.
Proc Natl Acad Sci U S A ; 119(20): e2201585119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35544692

RESUMO

Many cellular activities in bacteria are organized according to their growth rate. The notion that ppGpp measures the cell's growth rate is well accepted in the field of bacterial physiology. However, despite decades of interrogation and the identification of multiple molecular interactions that connects ppGpp to some aspects of cell growth, we lack a system-level, quantitative picture of how this alleged "measurement" is performed. Through quantitative experiments, we show that the ppGpp pool responds inversely to the rate of translational elongation in Escherichia coli. Together with its roles in inhibiting ribosome biogenesis and activity, ppGpp closes a key regulatory circuit that enables the cell to perceive and control the rate of its growth across conditions. The celebrated linear growth law relating the ribosome content and growth rate emerges as a consequence of keeping a supply of ribosome reserves while maintaining elongation rate in slow growth conditions. Further analysis suggests the elongation rate itself is detected by sensing the ratio of dwelling and translocating ribosomes, a strategy employed to collapse the complex, high-dimensional dynamics of the molecular processes underlying cell growth to perceive the physiological state of the whole.


Assuntos
Escherichia coli , Guanosina Tetrafosfato , Elongação Traducional da Cadeia Peptídica , Ribossomos , Escherichia coli/citologia , Escherichia coli/crescimento & desenvolvimento , Guanosina Tetrafosfato/metabolismo , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...