Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 746410, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690995

RESUMO

The increasing frequency of S. aureus antimicrobial resistance has spurred interest in identifying alternative therapeutants. We investigated the S. aureus-inhibitory capacity of B. velezensis strains in mouse and bovine models. Among multiple B. velezensis strains that inhibited S. aureus growth in vitro, B. velezensis AP183 provided the most potent inhibition of S. aureus proliferation and bioluminescence in a mouse cutaneous wound (P = 0.02). Histology revealed abundant Gram-positive cocci in control wounds that were reduced in B. velezensis AP183-treated tissues. Experiments were then conducted to evaluate the ability of B. velezensis AP183 to prevent S. aureus biofilm formation on a tracheostomy tube substrate. B. velezensis AP183 could form a biofilm on a tracheostomy tube inner cannula substrate, and that this biofilm was antagonistic to S. aureus colonization. B. velezensis AP183 was also observed to inhibit the growth of S. aureus isolates originated from bovine mastitis cases. To evaluate the inflammatory response of mammary tissue to intramammary inoculation with B. velezensis AP183, we used high dose and low dose inocula in dairy cows. At the high dose, a significant increase in somatic cell count (SCC) and clinical mastitis was observed at all post-inoculation time points (P < 0.01), which resolved quickly compared to S. aureus-induced mastitis; in contrast, the lower dose of B. velezensis AP183 resulted in a slight increase of SCC and no clinical mastitis. In a subsequent experiment, all mammary quarters in four cows were induced to have grade 1 clinical mastitis by intramammary inoculation of a S. aureus mastitis isolate; following mastitis induction, eight quarters were treated with B. velezensis AP183 and milk samples were collected from pretreatment and post-treatment samples for 9 days. In groups treated with B. velezensis AP183, SCC and abundance of S. aureus decreased with significant reductions in S. aureus after 3 days post-inoculation with AP183 (P = 0.04). A milk microbiome analysis revealed significant reductions in S. aureus relative abundance in the AP183-treated group by 8 days post-inoculation (P = 0.02). These data indicate that B. velezensis AP183 can inhibit S. aureus biofilm formation and its proliferation in murine and bovine disease models.

2.
Int J Mol Sci ; 20(6)2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30934587

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disorder affecting 5.4 million people in the United States. Currently approved pharmacologic interventions for AD are limited to symptomatic improvement, not affecting the underlying pathology. Therefore, the search for novel therapeutic strategies is ongoing. A hallmark of AD is the compromised blood-brain barrier (BBB); thus, developing drugs that target the BBB to enhance its integrity and function could be a novel approach to prevent and/or treat AD. Previous evidence has shown the beneficial effects of growth factors in the treatment of AD pathology. Based on reported positive results obtained with the product Endoret®, the objective of this study was to investigate the effect of plasma rich in growth factors (PRGF) on the BBB integrity and function, initially in a cell-based BBB model and in 5x Familial Alzheimer's Disease (5xFAD) mice. Our results showed that while PRGF demonstrated a positive effect in the cell-based BBB model with the enhanced integrity and function of the model, the in-vivo findings showed that PRGF exacerbated amyloid pathology in 5xFAD brains. At 10 and 100% doses, PRGF increased amyloid deposition associated with increased apoptosis and neuroinflammation. In conclusion, our results suggest PRGF may not provide beneficial effects against AD and the consideration to utilize growth factors should further be investigated.


Assuntos
Amiloide/metabolismo , Barreira Hematoencefálica/patologia , Peptídeos e Proteínas de Sinalização Intercelular/efeitos adversos , Plasma/química , Peptídeos beta-Amiloides/metabolismo , Animais , Astrócitos/metabolismo , Biomarcadores/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/metabolismo , Mediadores da Inflamação/metabolismo , Radioisótopos do Iodo , Camundongos Transgênicos , Transporte Proteico , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Neurobiol Dis ; 125: 123-134, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30710675

RESUMO

Alzheimer's disease (AD) is a complex neurodegenerative disorder with multiple dysfunctional pathways. Therefore, a sophisticated treatment strategy that simultaneously targets multiple brain cell types and disease pathways could be advantageous for effective intervention. To elucidate an effective treatment, we developed an in vitro high-throughput screening (HTS) assay to evaluate candidate drugs for their ability to enhance the integrity of the blood-brain barrier (BBB) and improve clearance of amyloid-ß (Aß) using a cell-based BBB model. Results from HTS identified etodolac and α-tocopherol as promising drugs for further investigation. Both drugs were tested separately and in combination for the purpose of targeting multiple pathways including neuroinflammation and oxidative stress. In vitro studies assessed the effects of etodolac and α-tocopherol individually and collectively for BBB integrity and Aß transport, synaptic markers and Aß production in APP-transfected neuronal cells, as well as effects on inflammation and oxidative stress in astrocytes. Transgenic 5XFAD mice were used to translate in vitro results of etodolac and α-tocopherol independently and with concurrent administration. Compared to either drug alone, the combination significantly enhanced the BBB function, decreased total Aß load correlated with increased expression of major transport proteins, promoted APP processing towards the neuroprotective and non-amyloidogenic pathway, induced synaptic markers expression, and significantly reduced neuroinflammation and oxidative stress both in vitro and in vivo. Collective findings demonstrated the combination produced mixed interaction showing additive, less than additive or synergistic effects on the evaluated markers. In conclusion, this study highlights the significance of combination therapy to simultaneously target multiple disease pathways, and suggest the repurposing and combination of etodolac and α-tocopherol as a novel therapeutic strategy against AD.


Assuntos
Doença de Alzheimer/patologia , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Etodolac/farmacologia , alfa-Tocoferol/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Camundongos , Camundongos Transgênicos , Estresse Oxidativo/efeitos dos fármacos
4.
BMC Genomics ; 17: 179, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26940863

RESUMO

BACKGROUND: Staphylococcus aureus (S. aureus) infections range in severity due to expression of certain virulence factors encoded on mobile genetic elements (MGE). As such, characterization of these MGE, as well as single nucleotide polymorphisms, is of high clinical and microbiological importance. To understand the evolution of these dangerous pathogens, it is paramount to define reference strains that may predate MGE acquisition. One such candidate is S. aureus Tager 104, a previously uncharacterized strain isolated from a patient with impetigo in 1947. RESULTS: We show here that S. aureus Tager 104 can survive in the bloodstream and infect naïve organs. We also demonstrate a procedure to construct and validate the assembly of S. aureus genomes, using Tager 104 as a proof-of-concept. In so doing, we bridged confounding gap regions that limited our initial attempts to close this 2.82 Mb genome, through integration of data from Illumina Nextera paired-end, PacBio RS, and Lucigen NxSeq mate-pair libraries. Furthermore, we provide independent confirmation of our segmental arrangement of the Tager 104 genome by the sole use of Lucigen NxSeq libraries filled by paired-end MiSeq reads and alignment with SPAdes software. Genomic analysis of Tager 104 revealed limited MGE, and a νSaß island configuration that is reminiscent of other hospital acquired S. aureus genomes. CONCLUSIONS: Tager 104 represents an early-branching ancestor of certain hospital-acquired strains. Combined with its earlier isolation date and limited content of MGE, Tager 104 can serve as a viable reference for future comparative genome studies.


Assuntos
Evolução Molecular , Genoma Bacteriano , Staphylococcus aureus/genética , Animais , Técnicas de Tipagem Bacteriana , Infecção Hospitalar/microbiologia , Feminino , Biblioteca Gênica , Humanos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Filogenia , Proteoma , Alinhamento de Sequência , Software , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/classificação , Staphylococcus aureus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...