Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38648543

RESUMO

Background: West Nile virus (WNV), Everglades virus (EVEV), and five species of Orthobunyavirus were isolated from mosquitoes collected in the Everglades in 2016-2017. Prior studies of blood meals of mosquitoes in southern Florida have related findings to acquisition and transmission of EVEV, St. Louis encephalitis virus, and WNV, but not the Orthobunyavirus viruses associated with the subgenus Melanoconion of the genus Culex. Materials and Methods: In the present study, blood-fed mosquitoes were collected in the Everglades in 2016, 2017, 2021, and 2022, and from an industrial site in Naples, FL in 2017. Blood meals were identified to host species by PCR assays using mitochondrial cytochrome b gene. Results: Blood meals were identified from Anopheles crucians complex and 11 mosquito species captured in the Florida Everglades and from 3 species collected from an industrial site. The largest numbers of blood-fed specimens were from Culex nigripalpus, Culex erraticus, Culex cedecei, and Aedes taeniorhynchus. Cx. erraticus fed on mammals, birds, and reptiles, particularly American alligator. This mosquito species could transmit WNV to American alligator in the wild. Cx. nigripalpus acquired blood meals primarily from birds and mammals and frequently fed on medium-sized mammals and white-tailed deer. Water and wading birds were the primary avian hosts for Cx. nigripalpus and Cx. erraticus in the Everglades. Wading birds are susceptible to WNV and could serve as reservoir hosts. Cx. cedecei fed on five species of rodents, particularly black and hispid cotton rats. EVEV and three different species of Orthobunyavirus have been isolated from the hispid cotton rat and Cx. cedecei in the Everglades. Cx. cedecei is likely acquiring and transmitting these viruses among hispid cotton rats and other rodents. The marsh rabbit was a frequent host for An. crucians complex. An. crucians complex, and other species could acquire Tensaw virus from rabbits. Conclusions: Our study contributes to a better understanding of the host and viral associations of mosquito species in southwestern Florida.

2.
Am J Trop Med Hyg ; 110(5): 968-970, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531101

RESUMO

Brazoran virus was first isolated from Culex mosquitoes in Texas in 2012, yet little is known about this virus. We report the isolation of this virus from Culex erraticus from southern Florida during 2016. The Florida strain had a nucleotide identity of 96.3% (S segment), 99.1% (M segment), and 95.8% (L segment) to the Texas isolate. Culex quinquefasciatus and Aedes aegypti colonies were subsequently fed virus blood meals to determine their vector competence for Brazoran virus. Culex quinquefasciatus was susceptible to midgut infection, but few mosquitoes developed disseminated infections. Aedes aegypti supported disseminated infection, but virus transmission could not be demonstrated. Suckling mice became infected by intradermal inoculation without visible disease signs. The virus was detected in multiple mouse tissues but rarely infected the brain. This study documents the first isolation of Brazoran virus outside of Texas. Although this virus infected Ae. aegypti and Cx. quinquefasciatus in laboratory trials, their vector competence could not be demonstrated, suggesting they are unlikely vectors of Brazoran virus.


Assuntos
Aedes , Culex , Mosquitos Vetores , Orthobunyavirus , Animais , Culex/virologia , Aedes/virologia , Camundongos , Mosquitos Vetores/virologia , Florida/epidemiologia , Orthobunyavirus/isolamento & purificação , Feminino
3.
Curr Biol ; 33(12): 2515-2527.e6, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37295427

RESUMO

Eastern equine encephalitis virus (EEEV) causes a rare but severe disease in horses and humans and is maintained in an enzootic transmission cycle between songbirds and Culiseta melanura mosquitoes. In 2019, the largest EEEV outbreak in the United States for more than 50 years occurred, centered in the Northeast. To explore the dynamics of the outbreak, we sequenced 80 isolates of EEEV and combined them with existing genomic data. We found that, similar to previous years, cases were driven by multiple independent but short-lived virus introductions into the Northeast from Florida. Once in the Northeast, we found that Massachusetts was important for regional spread. We found no evidence of any changes in viral, human, or bird factors which would explain the increase in cases in 2019, although the ecology of EEEV is complex and further data is required to explore these in more detail. By using detailed mosquito surveillance data collected by Massachusetts and Connecticut, however, we found that the abundance of Cs. melanura was exceptionally high in 2019, as was the EEEV infection rate. We employed these mosquito data to build a negative binomial regression model and applied it to estimate early season risks of human or horse cases. We found that the month of first detection of EEEV in mosquito surveillance data and vector index (abundance multiplied by infection rate) were predictive of cases later in the season. We therefore highlight the importance of mosquito surveillance programs as an integral part of public health and disease control.


Assuntos
Culicidae , Vírus da Encefalite Equina do Leste , Encefalomielite Equina , Aves Canoras , Animais , Cavalos , Humanos , Vírus da Encefalite Equina do Leste/genética , Mosquitos Vetores , Encefalomielite Equina/epidemiologia , Encefalomielite Equina/veterinária , Massachusetts/epidemiologia , Surtos de Doenças/veterinária
4.
medRxiv ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945576

RESUMO

Eastern equine encephalitis virus (EEEV) causes a rare but severe disease in horses and humans, and is maintained in an enzootic transmission cycle between songbirds and Culiseta melanura mosquitoes. In 2019, the largest EEEV outbreak in the United States for more than 50 years occurred, centered in the Northeast. To explore the dynamics of the outbreak, we sequenced 80 isolates of EEEV and combined them with existing genomic data. We found that, like previous years, cases were driven by frequent short-lived virus introductions into the Northeast from Florida. Once in the Northeast, we found that Massachusetts was important for regional spread. We found no evidence of any changes in viral, human, or bird factors which would explain the increase in cases in 2019. By using detailed mosquito surveillance data collected by Massachusetts and Connecticut, however, we found that the abundance of Cs. melanura was exceptionally high in 2019, as was the EEEV infection rate. We employed these mosquito data to build a negative binomial regression model and applied it to estimate early season risks of human or horse cases. We found that the month of first detection of EEEV in mosquito surveillance data and vector index (abundance multiplied by infection rate) were predictive of cases later in the season. We therefore highlight the importance of mosquito surveillance programs as an integral part of public health and disease control.

5.
Am J Trop Med Hyg ; 107(6): 1239-1241, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36315998

RESUMO

Mechanical transmission is an understudied mode of arbovirus transmission that occurs when a biting insect transmits virus among hosts by the direct transfer of virus particles contaminating its mouthparts. Multiple arboviruses have been shown to be capable of utilizing this transmission route, but most studies were conducted 40 to 70 years ago using dated methodologies. To gain a better understanding of this phenomenon, we used molecular techniques to evaluate the efficiency of mechanical transmission by Aedes aegypti mosquitoes for two evolutionarily divergent arboviruses, chikungunya virus (CHIKV) and dengue virus (DENV). Viral RNA and/or infectious DENV could be detected on 13.8% of mosquito proboscises sampled immediately after an infectious bloodmeal, but positivity rates declined within hours. CHIKV RNA and/or infectious virus was detected on 38.8% of proboscises immediately after feeding but positivity rates dropped to 2.5% within 4 hours. RNA copy numbers were low for both viruses, and we were unable to demonstrate mechanical transmission of CHIKV using an established animal model, suggesting that this mode of transmission is unlikely under natural conditions.


Assuntos
Aedes , Arbovírus , Febre de Chikungunya , Vírus Chikungunya , Vírus da Dengue , Dengue , Animais , RNA Viral/genética , Mosquitos Vetores
6.
Am J Trop Med Hyg ; 106(2): 610-622, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35008051

RESUMO

Mosquitoes were collected for 12 consecutive months beginning June 2016, from 11 locations in the Florida Everglades, Collier County, and tested for viruses by isolation in Vero cells and subsequent identification. One species complex and 31 species of mosquitoes were identified from 668,809 specimens. Ochlerotatus taeniorhynchus comprised 72.2% of the collection. Other notable species were Anopheles crucians complex, Culex nigripalpus, Cx. erraticus, and Cx. cedecei. Seven species of virus were identified from 110 isolations: Everglades, Gumbo Limbo, Mahogany Hammock, Pahayokee, Shark River, Tensaw, and West Nile viruses. Everglades, West Nile, Tensaw, and Mahogany Hammock viruses were most frequently isolated. Largest numbers of viruses were identified from Cx. cedecei, Cx. nigripalpus, and An. crucians complex. Five species of virus were isolated from Cx. cedecei. Viruses were isolated from mangrove, cypress swamp, hardwood hammock, and sawgrass habitats. West Nile virus was isolated August through October when Cx. nigripalpus was most abundant. Everglades virus was the most frequently isolated virus from nine species of mosquitoes collected from June through August. Tensaw virus was isolated primarily from Anopheles species. Isolations were made in July, August, January, February, and April, suggesting that this virus may be present in host-seeking mosquitoes throughout the year. Mahogany Hammock, Shark River, Gumbo Limbo, and Pahayokee viruses were isolated primarily from Cx. cedecei from June through December. Shotgun metagenomic sequencing was used to document that seven pools of Cx. cedecei were infected with two arboviruses. As communities expand into the Everglades, more humans will become exposed to arboviruses.


Assuntos
Culicidae/classificação , Culicidae/virologia , Mosquitos Vetores/classificação , Mosquitos Vetores/virologia , RNA Viral/isolamento & purificação , Doenças Transmitidas por Vetores/virologia , Viroses/classificação , Animais , Ecossistema , Florida , Filogenia , Estações do Ano
7.
Pest Manag Sci ; 77(11): 5186-5201, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34272800

RESUMO

BACKGROUND: Mosquito larval control through the use of insecticides is the most common strategy for suppressing West Nile virus (WNV) vector populations in Connecticut (CT), USA. To evaluate the ability of larval control to reduce entomological risk metrics associated with WNV, we performed WNV surveillance and assessments of municipal larvicide application programs in Milford and Stratford, CT in 2019 and 2020. Each town treated catch basins and nonbasin habitats (Milford only) with biopesticide products during both WNV transmission seasons. Adult mosquitoes were collected weekly with gravid and CO2 -baited light traps and tested for WNV; larvae and pupae were sampled weekly from basins within 500 m of trapping sites, and Culex pipiens larval mortality was determined with laboratory bioassays of catch basin water samples. RESULTS: Declines in 4th instar larvae and pupae were observed in catch basins up to 2-week post-treatment, and we detected a positive relationship between adult female C. pipiens collections in gravid traps and pupal abundance in basins. We also detected a significant difference in total light trap collections between the two towns. Despite these findings, C. pipiens adult collections and WNV mosquito infection prevalence in gravid traps were similar between towns. CONCLUSION: Larvicide applications reduced pupal abundance and the prevalence of host-seeking adults with no detectable impact on entomological risk metrics for WNV. Further research is needed to better determine the level of mosquito larval control required to reduce WNV transmission risk.


Assuntos
Vírus do Nilo Ocidental , Animais , Connecticut , Feminino , Larva , Mosquitos Vetores , Comportamento de Redução do Risco
8.
Nat Microbiol ; 5(2): 239-247, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31819213

RESUMO

The recent Zika virus (ZIKV) and chikungunya virus epidemics highlight the explosive nature of arthropod-borne viruses (arboviruses) transmitted by Aedes spp. mosquitoes1,2. Vector competence and the extrinsic incubation period (EIP) are two key entomological parameters used to assess the public health risk posed by arboviruses3. These are typically measured empirically by offering mosquitoes an infectious blood meal and temporally sampling mosquitoes to determine the infection and transmission status. This approach has been used for the better part of a century; however, it does not accurately capture the biology and behaviour of many mosquito vectors that refeed frequently (every 2-3 d)4. Here, we demonstrate that acquisition of a second non-infectious blood meal significantly shortens the EIP of ZIKV-infected Aedes aegypti by enhancing virus dissemination from the mosquito midgut. Similarly, a second blood meal increases the competence of this species for dengue virus and chikungunya virus as well as Aedes albopictus for ZIKV, suggesting that this phenomenon may be common among other virus-vector pairings and that A. albopictus might be a more important vector than once thought. Blood-meal-induced microperforations in the virus-impenetrable basal lamina that surrounds the midgut provide a mechanism for enhanced virus escape. Modelling of these findings reveals that a shortened EIP would result in a significant increase in the basic reproductive number, R0, estimated from experimental data. This helps to explain how A. aegypti can sustain explosive epidemics such as ZIKV despite relatively poor vector competence in single-feed laboratory trials. Together, these data demonstrate a direct and unrecognized link between mosquito feeding behaviour, EIP and vector competence.


Assuntos
Aedes/virologia , Infecções por Arbovirus/transmissão , Modelos Biológicos , Mosquitos Vetores/virologia , Aedes/ultraestrutura , Animais , Infecções por Arbovirus/sangue , Infecções por Arbovirus/virologia , Número Básico de Reprodução , Febre de Chikungunya/transmissão , Dengue/transmissão , Sistema Digestório/ultraestrutura , Sistema Digestório/virologia , Feminino , Interações entre Hospedeiro e Microrganismos , Humanos , Masculino , Camundongos , Microscopia Eletrônica de Varredura , Mosquitos Vetores/ultraestrutura , Infecção por Zika virus/transmissão
9.
J Am Mosq Control Assoc ; 34(1): 1-10, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-31442119

RESUMO

Seasonal abundance of mosquitoes, their viruses, and blood-feeding habits were determined at an open-faced quarry in North Branford, CT, in 2010 and 2011. This unique habitat had not previously been sampled for mosquitoes and mosquito-borne viruses. Thirty species of mosquitoes were identified from 41,719 specimens collected. Coquillettidia perturbans, Aedes trivittatus, and Ae. vexans were the most abundant species and represented 34.5%, 17.7%, and 14.8% of the totals, respectively. Jamestown Canyon virus was isolated from 6 species of mosquitoes collected from mid-June through July: Cq. perturbans (3 pools), Ae. cantator (3), Ae. trivittatus (2), Ae. aurifer (1), Ae. excrucians (1), and Culex pipiens (1). West Nile virus was cultured from 8 pools of Cx. pipiens and from 1 pool of Culiseta melanura collected from mid-August through late September. Cache Valley virus was isolated from 4 species of mosquitoes in 3 genera from about mid-August through late September 2011: Cq. perturbans (5 pools), Ae. trivittatus (2), Anopheles punctipennis (1), and An. quadrimaculatus (1). Nine different mammalian hosts were identified as sources of blood for 13 species of mosquitoes. White-tailed deer, Odocoileus virginianus, were the most common mammalian hosts (90.8%), followed by raccoon, Procyon lotor (3.1%), coyote, Canis latrans (2.4%), and human, Homo sapiens (1.2%). Exclusive mammalian blood-feeding mosquitoes included: Ae. canadensis, Ae. cantator, Ae. excrucians, Ae. japonicus, Ae. vexans, An. punctipennis, and Cx. salinarius. Fourteen species of birds, mostly Passeriformes, were identified as sources of blood from 6 mosquito species. Five species that fed on mammals (Ae. thibaulti, Ae. trivittatus, Ae. cinereus, Cq. perturbans, and Cx. pipiens) also fed on birds.


Assuntos
Distribuição Animal , Arbovírus/isolamento & purificação , Culicidae/fisiologia , Animais , Connecticut , Culicidae/virologia , Dieta , Comportamento Alimentar , Feminino , Dinâmica Populacional , Estações do Ano
10.
Virus Evol ; 2(2): vew033, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28058113

RESUMO

Arthropod-borne RNA viruses exist within hosts as heterogeneous populations of viral variants and, as a result, possess great genetic plasticity. Understanding the micro-evolutionary forces shaping these viruses can provide insights into how they emerge, adapt, and persist in new and changing ecological niches. While considerable attention has been directed toward studying the population dynamics of mosquito-borne viruses, little is known about tick-borne virus populations. Therefore, using a mouse and Ixodes scapularis tick transmission model, we examined Powassan virus (POWV; Flaviviridae, Flavivirus) populations in and between both the vertebrate host and arthropod vector. We found that genetic bottlenecks, RNAi-mediated diversification, and selective constraints collectively influence POWV evolution. Together, our data provide a mechanistic explanation for the slow, long-term evolutionary trends of POWV, and suggest that all arthropod-borne viruses encounter similar selective pressures at the molecular level (i.e. RNAi), yet evolve much differently due to their unique rates and modes of transmission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...