Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e27930, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560214

RESUMO

Despite the diligent efforts of libraries, archives, and similar institutions to preserve cultural monuments, biodeterioration continues to pose a significant threat to these objects. One of the main sources of microorganisms responsible for the biodeterioration process is the presence of airborne microorganisms. Therefore, this research aims to monitor and compare outcomes of both culture-dependent (utilising various cultivation strategies) and culture-independent approaches (RNA-based sequencing) to identifying metabolically active airborne microorganisms in archives in the Czech Republic. Through this study, several species that have the potential to pose risks to both cultural heritage objects and the health of institution employees were found. Additionally, the efficacy of different cultivation media was demonstrated to be varied across archive rooms, highlighting the necessity of employing multiple cultivation media for comprehensive analyses. Of noteworthy importance, the resuscitating-promoting factor (Rpf) proved to be a pivotal tool, increasing bacterial culturability by up to 30% when synergistically employed Reasoner's 2A agar (R2A) and R2A + Rpf media. Next, the study emphasises the importance of integrating both culture-dependent and culture-independent approaches. The overlap between genera identified by the culture-dependent approach and those identified also by the culture-independent approach varied from 33% to surpassing 94%, with the maximum alignment exceeding 94% in only one case. Our results highlight the importance of actively monitoring and assessing levels of microbial air contamination in archives to prevent further deterioration of cultural heritage objects and to promote improved conditions for employees in archives and similar institutions.

2.
Microbiol Spectr ; 11(4): e0117623, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37428069

RESUMO

Microbial contamination in cultural heritage storage facilities is undoubtedly still a huge problem and leads to the biodeterioration of historical objects and thus the loss of information for future generations. Most studies focus on fungi that colonize materials, which are the primary agents of biodeterioration. However, bacteria also play crucial roles in this process. Therefore, this study focuses on identifying bacteria that colonize audio-visual materials and those present in the air in the archives of the Czech Republic. For our purposes, the Illumina MiSeq amplicon sequencing method was used. Using this method, 18 bacterial genera with an abundance of higher than 1% were identified on audio-visual materials and in the air. We also evaluated some factors that were assumed to possibly influence the composition of bacterial communities on audio-visual materials, of which locality was shown to be significant. Locality also explained most of the variability in bacterial community structure. Furthermore, an association between genera colonizing materials and genera present in the air was demonstrated, and indicator genera were evaluated for each locality. IMPORTANCE The existing literature on microbial contamination of audio-visual materials has predominantly used culture-based methods to evaluate contamination and has overlooked the potential impact of environmental factors and material composition on microbial communities. Furthermore, previous studies have mainly focused on contamination by microscopic fungi, neglecting other potentially harmful microorganisms. To address these gaps in knowledge, our study is the first to provide a comprehensive analysis of bacterial communities present on historical audio-visual materials. Our statistical analyses demonstrate the critical importance of including air analysis in such studies, as airborne microorganisms can significantly contribute to the contamination of these materials. The insights gained from this study are not only valuable in developing effective preventive measures to mitigate contamination but also valuable in identifying targeted disinfection methods for specific types of microorganisms. Overall, our findings highlight the need for a more holistic approach to understanding microbial contamination in cultural heritage materials.


Assuntos
Bactérias , Microbiota , República Tcheca , Bactérias/genética , Fungos/genética , Atmosfera
3.
Microorganisms ; 9(12)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34946099

RESUMO

The biodeterioration of audio-visual materials is a huge problem, as it can cause incalculable losses. To preserve these cultural heritage objects for future generations, it is necessary to determine the main agents of biodeterioration. This study focuses on identifying fungi, both from the air and smears from photographs and cinematographic films that differ in the type of carrier and binder, using high-throughput sequencing approaches. The alpha diversity measures of communities present on all types of carriers were compared, and a significant difference between cellulose acetate and baryta paper was observed. Next, the locality, type of carrier, and audio-visual material seem to affect the structure of fungal communities. Additionally, a link between the occurrence of the most abundant classes and species on audio-visual materials and air contamination in the archives was proven. In both cases, the most abundant classes were Agariomycetes, Dothideomycetes, and Eurotiomycetes, and approximately half of the 50 most abundant species detected on the audio-visual materials and in the air were identical.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...