Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 84(1): 180-180.e1, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181759

RESUMO

The genetic information stored in DNA is under continuous threat by endogenous and environmental sources of DNA damage. Cells have evolved multiple DNA repair pathways that function in overlapping manners, with principles shared across species. Here, we depict the main DNA repair pathways cells rely on, with the primary lesions they are tackling, along with key players and main DNA transactions. To view this SnapShot, open or download the PDF.


Assuntos
Dano ao DNA , DNA , Reparo do DNA
2.
Mol Cell ; 84(1): 182-182.e1, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181760

RESUMO

Completion of DNA replication relies on the ability of replication forks to traverse various types of DNA damage, actively transcribed regions, and structured DNA. The mechanisms enabling these processes are here referred to as DNA damage tolerance pathways. Here, we depict the stalled DNA replication fork structures with main DNA transactions and key factors contributing to the bypass of such blocks, replication restart, and completion. To view this SnapShot, open or download the PDF.


Assuntos
Tolerância ao Dano no DNA , Dano ao DNA , DNA
3.
EMBO Rep ; 25(2): 876-901, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177925

RESUMO

FANCJ, a DNA helicase linked to Fanconi anemia and frequently mutated in cancers, counteracts replication stress by dismantling unconventional DNA secondary structures (such as G-quadruplexes) that occur at the DNA replication fork in certain sequence contexts. However, how FANCJ is recruited to the replisome is unknown. Here, we report that FANCJ directly binds to AND-1 (the vertebrate ortholog of budding yeast Ctf4), a homo-trimeric protein adaptor that connects the CDC45/MCM2-7/GINS replicative DNA helicase with DNA polymerase α and several other factors at DNA replication forks. The interaction between FANCJ and AND-1 requires the integrity of an evolutionarily conserved Ctf4-interacting protein (CIP) box located between the FANCJ helicase motifs IV and V. Disruption of the CIP box significantly reduces FANCJ association with the replisome, causing enhanced DNA damage, decreased replication fork recovery and fork asymmetry in cells unchallenged or treated with Pyridostatin, a G-quadruplex-binder, or Mitomycin C, a DNA inter-strand cross-linking agent. Cancer-relevant FANCJ CIP box variants display reduced AND-1-binding and enhanced DNA damage, a finding that suggests their potential role in cancer predisposition.


Assuntos
DNA , Neoplasias , Humanos , DNA/química , Replicação do DNA , Instabilidade Genômica , Proteínas de Manutenção de Minicromossomo
4.
Mol Oncol ; 17(10): 1950-1952, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37681281

RESUMO

A new study by Longo, Roy et al. has solved the structure of the RAD51C-XRCC3 (CX3) heterodimer with a bound ATP analog, identifying two main structural interfaces and defining separable replication fork stability roles. One function relates to the ability of RAD51C to bind and assemble CX3 on nascent DNA, with an impact on the ability of forks to restart upon replication stress. The other relates to effective CX3 heterodimer formation, required for 5' RAD51 filament capping, with effects on RAD51 filament disassembly, fork protection and influencing the persistence of reversed forks.

5.
Nat Struct Mol Biol ; 30(9): 1286-1294, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37592094

RESUMO

Sister chromatid cohesion, established during replication by the ring-shaped multiprotein complex cohesin, is essential for faithful chromosome segregation. Replisome-associated proteins are required to generate cohesion by two independent pathways. One mediates conversion of cohesins bound to unreplicated DNA ahead of replication forks into cohesive entities behind them, while the second promotes cohesin de novo loading onto newly replicated DNA. The latter process depends on the cohesin loader Scc2 (NIPBL in vertebrates) and the alternative PCNA loader CTF18-RFC. However, the mechanism of de novo cohesin loading during replication is unknown. Here we show that PCNA physically recruits the yeast cohesin loader Scc2 via its C-terminal PCNA-interacting protein motif. Binding to PCNA is crucial, as the scc2-pip mutant deficient in Scc2-PCNA interaction is defective in cohesion when combined with replisome mutants of the cohesin conversion pathway. Importantly, the role of NIPBL recruitment to PCNA for cohesion generation is conserved in vertebrate cells.


Assuntos
Cromátides , Segregação de Cromossomos , Animais , Antígeno Nuclear de Célula em Proliferação/genética , Cromátides/genética , Proteínas de Ciclo Celular/genética , Saccharomyces cerevisiae/genética , Coesinas
6.
Nat Commun ; 13(1): 2480, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513396

RESUMO

DNA damage tolerance (DDT), activated by replication stress during genome replication, is mediated by translesion synthesis and homologous recombination (HR). Here we uncover that DDK kinase, essential for replication initiation, is critical for replication-associated recombination-mediated DDT. DDK relies on its multi-monoSUMOylation to facilitate HR-mediated DDT and optimal retention of Rad51 recombinase at replication damage sites. Impairment of DDK kinase activity, reduced monoSUMOylation and mutations in the putative SUMO Interacting Motifs (SIMs) of Rad51 impair replication-associated recombination and cause fork uncoupling with accumulation of large single-stranded DNA regions at fork branching points. Notably, genetic activation of salvage recombination rescues the uncoupled fork phenotype but not the recombination-dependent gap-filling defect of DDK mutants, revealing that the salvage recombination pathway operates preferentially proximal to fork junctions at stalled replication forks. Overall, we uncover that monoSUMOylated DDK acts with Rad51 in an axis that prevents replication fork uncoupling and mediates recombination-dependent gap-filling.


Assuntos
Dano ao DNA , Rad51 Recombinase , Reparo do DNA , Replicação do DNA , Recombinação Homóloga , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo
7.
Genes Dev ; 36(3-4): 167-179, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35115379

RESUMO

Ctf4 is a conserved replisome component with multiple roles in DNA metabolism. To investigate connections between Ctf4-mediated processes involved in drug resistance, we conducted a suppressor screen of ctf4Δ sensitivity to the methylating agent MMS. We uncovered that mutations in Dpb3 and Dpb4 components of polymerase ε result in the development of drug resistance in ctf4Δ via their histone-binding function. Alleviated sensitivity to MMS of the double mutants was not associated with rescue of ctf4Δ defects in sister chromatid cohesion, replication fork architecture, or template switching, which ensures error-free replication in the presence of genotoxic stress. Strikingly, the improved viability depended on translesion synthesis (TLS) polymerase-mediated mutagenesis, which was drastically increased in ctf4 dpb3 double mutants. Importantly, mutations in Mcm2-Ctf4-Polα and Dpb3-Dpb4 axes of parental (H3-H4)2 deposition on lagging and leading strands invariably resulted in reduced error-free DNA damage tolerance through gap filling by template switch recombination. Overall, we uncovered a chromatin-based drug resistance mechanism in which defects in parental histone transfer after replication fork passage impair error-free recombination bypass and lead to up-regulation of TLS-mediated mutagenesis and drug resistance.


Assuntos
Histonas , Proteínas de Saccharomyces cerevisiae , Dano ao DNA/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Resistência a Medicamentos , Histonas/genética , Histonas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Brain ; 145(9): 3072-3094, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35045161

RESUMO

Mutation in the senataxin (SETX) gene causes an autosomal dominant neuromuscular disorder, amyotrophic lateral sclerosis 4 (ALS4), characterized by degeneration of motor neurons, muscle weakness and atrophy. SETX is an RNA-DNA helicase that mediates resolution of co-transcriptional RNA:DNA hybrids (R-loops). The process of R-loop resolution is essential for the normal functioning of cells, including neurons. The molecular basis of ALS4 pathogenesis and the mechanism of R-loop resolution are unclear. We report that the zinc finger protein ZPR1 binds to RNA:DNA hybrids, recruits SETX onto R-loops and is critical for R-loop resolution. ZPR1 deficiency disrupts the integrity of R-loop resolution complexes containing SETX and causes increased R-loop accumulation throughout gene transcription. We uncover that SETX is a downstream target of ZPR1 and that overexpression of ZPR1 can rescue R-loop resolution complexe assembly in SETX-deficient cells but not vice versa. To uncover the mechanism of R-loop resolution, we examined the function of SETX-ZPR1 complexes using two genetic motor neuron disease models with altered R-loop resolution. Notably, chronic low levels of SETX-ZPR1 complexes onto R-loops result in a decrease of R-loop resolution activity causing an increase in R-loop levels in spinal muscular atrophy. ZPR1 overexpression increases recruitment of SETX onto R-loops, decreases R-loops and rescues the spinal muscular atrophy phenotype in motor neurons and patient cells. Strikingly, interaction of SETX with ZPR1 is disrupted in ALS4 patients that have heterozygous SETX (L389S) mutation. ZPR1 fails to recruit the mutant SETX homodimer but recruits the heterodimer with partially disrupted interaction between SETX and ZPR1. Interestingly, disruption of SETX-ZPR1 complexes causes increase in R-loop resolution activity leading to fewer R-loops in ALS4. Modulation of ZPR1 levels regulates R-loop accumulation and rescues the pathogenic R-loop phenotype in ALS4 patient cells. These findings originate a new concept, 'opposite alterations in a cell biological activity (R-loop resolution) result in similar pathogenesis (neurodegeneration) in different genetic motor neuron disorders'. We propose that ZPR1 collaborates with SETX and may function as a molecular brake to regulate SETX-dependent R-loop resolution activity critical for the normal functioning of motor neurons.


Assuntos
Esclerose Lateral Amiotrófica , DNA Helicases , Enzimas Multifuncionais , RNA Helicases , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , DNA/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Humanos , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Atrofia Muscular Espinal/genética , Mutação , Estruturas R-Loop , RNA , RNA Helicases/genética , RNA Helicases/metabolismo
9.
Science ; 374(6573): eabm4805, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34762488

RESUMO

Protein-protein interactions play critical roles in biology, but the structures of many eukaryotic protein complexes are unknown, and there are likely many interactions not yet identified. We take advantage of advances in proteome-wide amino acid coevolution analysis and deep-learning­based structure modeling to systematically identify and build accurate models of core eukaryotic protein complexes within the Saccharomyces cerevisiae proteome. We use a combination of RoseTTAFold and AlphaFold to screen through paired multiple sequence alignments for 8.3 million pairs of yeast proteins, identify 1505 likely to interact, and build structure models for 106 previously unidentified assemblies and 806 that have not been structurally characterized. These complexes, which have as many as five subunits, play roles in almost all key processes in eukaryotic cells and provide broad insights into biological function.


Assuntos
Aprendizado Profundo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mapeamento de Interação de Proteínas , Proteoma/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Aciltransferases/química , Aciltransferases/metabolismo , Segregação de Cromossomos , Biologia Computacional , Simulação por Computador , Reparo do DNA , Evolução Molecular , Recombinação Homóloga , Ligases/química , Ligases/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Biossíntese de Proteínas , Conformação Proteica , Mapas de Interação de Proteínas , Proteoma/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/química , Ubiquitina/química , Ubiquitina/metabolismo
10.
Genes Dev ; 35(19-20): 1368-1382, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34503989

RESUMO

The alternative PCNA loader containing CTF18-DCC1-CTF8 facilitates sister chromatid cohesion (SCC) by poorly defined mechanisms. Here we found that in DT40 cells, CTF18 acts complementarily with the Warsaw breakage syndrome DDX11 helicase in mediating SCC and proliferation. We uncover that the lethality and cohesion defects of ctf18 ddx11 mutants are associated with reduced levels of chromatin-bound cohesin and rescued by depletion of WAPL, a cohesin-removal factor. On the contrary, high levels of ESCO1/2 acetyltransferases that acetylate cohesin to establish SCC do not rescue ctf18 ddx11 phenotypes. Notably, the tight proximity of sister centromeres and increased anaphase bridges characteristic of WAPL-depleted cells are abrogated by loss of both CTF18 and DDX11 The results reveal that vertebrate CTF18 and DDX11 collaborate to provide sufficient amounts of chromatin-loaded cohesin available for SCC generation in the presence of WAPL-mediated cohesin-unloading activity. This process modulates chromosome structure and is essential for cellular proliferation in vertebrates.


Assuntos
Cromátides , Proteínas Cromossômicas não Histona , Animais , Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas Cromossômicas não Histona/genética , Vertebrados/genética , Coesinas
11.
Cell Rep ; 36(5): 109485, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34348159

RESUMO

Structural maintenance of chromosomes (SMCs) complexes, cohesin, condensin, and Smc5/6, are essential for viability and participate in multiple processes, including sister chromatid cohesion, chromosome condensation, and DNA repair. Here we show that SUMO chains target all three SMC complexes and are antagonized by the SUMO protease Ulp2 to prevent their turnover. We uncover that the essential role of the cohesin-associated subunit Pds5 is to counteract SUMO chains jointly with Ulp2. Importantly, fusion of Ulp2 to kleisin Scc1 supports viability of PDS5 null cells and protects cohesin from proteasomal degradation mediated by the SUMO-targeted ubiquitin ligase Slx5/Slx8. The lethality of PDS5-deleted cells can also be bypassed by simultaneous loss of the proliferating cell nuclear antigen (PCNA) unloader, Elg1, and the cohesin releaser, Wpl1, but only when Ulp2 is functional. Condensin and Smc5/6 complex are similarly guarded by Ulp2 against unscheduled SUMO chain assembly, which we propose to time the availability of SMC complexes on chromatin.


Assuntos
Endopeptidases/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Genes Supressores , Mutação/genética , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sumoilação , Coesinas
12.
Curr Opin Genet Dev ; 71: 27-33, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34271541

RESUMO

Helicases are in the spotlight of DNA metabolism and are critical for DNA repair in all domains of life. At their biochemical core, they bind and hydrolyze ATP, converting this energy to translocate unidirectionally, with different strand polarities and substrate binding specificities, along one strand of a nucleic acid. In doing so, DNA and RNA helicases separate duplex strands or remove nucleoprotein complexes, affecting DNA repair and the architecture of replication forks. In this review, we focus on recent advances on the roles and regulations of DNA helicases in homologous recombination repair, a critical pathway for mending damaged chromosomes and for ensuring genome integrity.


Assuntos
DNA Helicases , Reparo de DNA por Recombinação , Dano ao DNA , DNA Helicases/genética , Reparo do DNA/genética , Replicação do DNA/genética , Recombinação Homóloga
13.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33879618

RESUMO

DDX11 encodes an iron-sulfur cluster DNA helicase required for development, mutated, and overexpressed in cancers. Here, we show that loss of DDX11 causes replication stress and sensitizes cancer cells to DNA damaging agents, including poly ADP ribose polymerase (PARP) inhibitors and platinum drugs. We find that DDX11 helicase activity prevents chemotherapy drug hypersensitivity and accumulation of DNA damage. Mechanistically, DDX11 acts downstream of 53BP1 to mediate homology-directed repair and RAD51 focus formation in manners nonredundant with BRCA1 and BRCA2. As a result, DDX11 down-regulation aggravates the chemotherapeutic sensitivity of BRCA1/2-mutated cancers and resensitizes chemotherapy drug-resistant BRCA1/2-mutated cancer cells that regained homologous recombination proficiency. The results further indicate that DDX11 facilitates recombination repair by assisting double strand break resection and the loading of both RPA and RAD51 on single-stranded DNA substrates. We propose DDX11 as a potential target in cancers by creating pharmacologically exploitable DNA repair vulnerabilities.


Assuntos
RNA Helicases DEAD-box/metabolismo , DNA Helicases/metabolismo , Reparo do DNA , Resistencia a Medicamentos Antineoplásicos , Terapia de Alvo Molecular , Antineoplásicos , Cisplatino , Genes BRCA1 , Genes BRCA2 , Células HeLa , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases
14.
Nat Commun ; 12(1): 2111, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833229

RESUMO

Smc5/6 is essential for genome structural integrity by yet unknown mechanisms. Here we find that Smc5/6 co-localizes with the DNA crossed-strand processing complex Sgs1-Top3-Rmi1 (STR) at genomic regions known as natural pausing sites (NPSs) where it facilitates Top3 retention. Individual depletions of STR subunits and Smc5/6 cause similar accumulation of joint molecules (JMs) composed of reversed forks, double Holliday Junctions and hemicatenanes, indicative of Smc5/6 regulating Sgs1 and Top3 DNA processing activities. We isolate an intra-allelic suppressor of smc6-56 proficient in Top3 retention but affected in pathways that act complementarily with Sgs1 and Top3 to resolve JMs arising at replication termination. Upon replication stress, the smc6-56 suppressor requires STR and Mus81-Mms4 functions for recovery, but not Srs2 and Mph1 helicases that prevent maturation of recombination intermediates. Thus, Smc5/6 functions jointly with Top3 and STR to mediate replication completion and influences the function of other DNA crossed-strand processing enzymes at NPSs.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA/genética , Genoma Fúngico/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Endonucleases Flap/metabolismo , RecQ Helicases/metabolismo , Saccharomyces cerevisiae/metabolismo
15.
Nat Commun ; 11(1): 5746, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184279

RESUMO

The Mus81-Mms4 nuclease is activated in G2/M via Mms4 phosphorylation to allow resolution of persistent recombination structures. However, the fate of the activated phosphorylated Mms4 remains unknown. Here we find that Mms4 is engaged by (poly)SUMOylation and ubiquitylation and targeted for proteasome degradation, a process linked to the previously described Mms4 phosphorylation cycle. Mms4 is a mitotic substrate for the SUMO-Targeted Ubiquitin ligase Slx5/8, the SUMO-like domain-containing protein Esc2, and the Mms1-Cul8 ubiquitin ligase. In the absence of these activities, phosphorylated Mms4 accumulates on chromatin in an active state in the next G1, subsequently causing abnormal processing of replication-associated recombination intermediates and delaying the activation of the DNA damage checkpoint. Mus81-Mms4 mutants that stabilize phosphorylated Mms4 have similar detrimental effects on genome integrity. Overall, our findings highlight a replication protection function for Esc2-STUbL-Cul8 and emphasize the importance for genome stability of resetting phosphorylated Mms4 from one cycle to another.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Endonucleases Flap/metabolismo , Mitose/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Proteínas Culina/metabolismo , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Endonucleases Flap/genética , Regulação Fúngica da Expressão Gênica , Instabilidade Genômica , Mitose/genética , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , Reparo de DNA por Recombinação , Proteínas de Saccharomyces cerevisiae/genética , Sumoilação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
16.
Curr Genet ; 66(6): 1045-1051, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32671464

RESUMO

Homologous recombination is essential for the maintenance of genome integrity but must be strictly controlled to avoid dangerous outcomes that produce the opposite effect, genomic instability. During unperturbed chromosome replication, recombination is globally inhibited at ongoing DNA replication forks, which helps to prevent deleterious genomic rearrangements. This inhibition is carried out by Srs2, a helicase that binds to SUMOylated PCNA and has an anti-recombinogenic function at replication forks. However, at damaged stalled forks, Srs2 is counteracted and DNA lesion bypass can be achieved by recombination-mediated template switching. In budding yeast, template switching is dependent on Rad5. In the absence of this protein, replication forks stall in the presence of DNA lesions and cells die. Recently, we showed that in cells lacking Rad5 that are exposed to DNA damage or replicative stress, elimination of the conserved Mgs1/WRNIP1 ATPase allows an alternative mode of DNA damage bypass that is driven by recombination and facilitates completion of chromosome replication and cell viability. We have proposed that Mgs1 is important to prevent a potentially harmful salvage pathway of recombination at damaged stalled forks. In this review, we summarize our current understanding of how unwanted recombination is prevented at damaged stalled replication forks.


Assuntos
DNA Helicases/genética , Recombinação Homóloga/genética , Proteínas de Saccharomyces cerevisiae/genética , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Instabilidade Genômica/genética , Antígeno Nuclear de Célula em Proliferação/genética , Saccharomyces cerevisiae/genética , Sumoilação/genética
17.
EMBO J ; 39(18): e104185, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32705708

RESUMO

Regions of the genome with the potential to form secondary DNA structures pose a frequent and significant impediment to DNA replication and must be actively managed in order to preserve genetic and epigenetic integrity. How the replisome detects and responds to secondary structures is poorly understood. Here, we show that a core component of the fork protection complex in the eukaryotic replisome, Timeless, harbours in its C-terminal region a previously unappreciated DNA-binding domain that exhibits specific binding to G-quadruplex (G4) DNA structures. We show that this domain contributes to maintaining processive replication through G4-forming sequences, and exhibits partial redundancy with an adjacent PARP-binding domain. Further, this function of Timeless requires interaction with and activity of the helicase DDX11. Loss of both Timeless and DDX11 causes epigenetic instability at G4-forming sequences and DNA damage. Our findings indicate that Timeless contributes to the ability of the replisome to sense replication-hindering G4 formation and ensures the prompt resolution of these structures by DDX11 to maintain processive DNA synthesis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , RNA Helicases DEAD-box/metabolismo , Dano ao DNA , DNA Helicases/metabolismo , Replicação do DNA , Quadruplex G , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular , RNA Helicases DEAD-box/genética , DNA Helicases/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Domínios Proteicos
18.
Sci Adv ; 6(15): eaaz3327, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32285001

RESUMO

DNA damage tolerance (DDT) is crucial for genome integrity maintenance. DDT is mainly carried out by template switch recombination, an error-free mode of overcoming DNA lesions, or translesion DNA synthesis, which is error-prone. Here, we investigated the role of Mgs1/WRNIP1 in modulating DDT. Using budding yeast, we found that elimination of Mgs1 in cells lacking Rad5, an essential protein for DDT, activates an alternative mode of DNA damage bypass, driven by recombination, which allows chromosome replication and cell viability under stress conditions that block DNA replication forks. This salvage pathway is RAD52 and RAD59 dependent, requires the DNA polymerase δ and PCNA modification at K164, and is enabled by Esc2 and the PCNA unloader Elg1, being inhibited when Mgs1 is present. We propose that Mgs1 is necessary to prevent a potentially toxic recombination salvage pathway at sites of perturbed replication, which, in turn, favors Rad5-dependent template switching, thus helping to preserve genome stability.


Assuntos
Dano ao DNA , DNA Helicases/metabolismo , Replicação do DNA , Recombinação Genética , Transdução de Sinais , DNA Helicases/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Instabilidade Genômica , Viabilidade Microbiana/genética , Modelos Biológicos , Saccharomycetales/genética , Saccharomycetales/metabolismo , Estresse Fisiológico
19.
EMBO Rep ; 21(2): e48222, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31867888

RESUMO

SMC5/6 function in genome integrity remains elusive. Here, we show that SMC5 dysfunction in avian DT40 B cells causes mitotic delay and hypersensitivity toward DNA intra- and inter-strand crosslinkers (ICLs), with smc5 mutants being epistatic to FANCC and FANCM mutations affecting the Fanconi anemia (FA) pathway. Mutations in the checkpoint clamp loader RAD17 and the DNA helicase DDX11, acting in an FA-like pathway, do not aggravate the damage sensitivity caused by SMC5 dysfunction in DT40 cells. SMC5/6 knockdown in HeLa cells causes MMC sensitivity, increases nuclear bridges, micronuclei, and mitotic catastrophes in a manner similar and non-additive to FANCD2 knockdown. In both DT40 and HeLa systems, SMC5/6 deficiency does not affect FANCD2 ubiquitylation and, unlike FANCD2 depletion, RAD51 focus formation. SMC5/6 components further physically interact with FANCD2-I in human cells. Altogether, our data suggest that SMC5/6 functions jointly with the FA pathway to support genome integrity and DNA repair and may be implicated in FA or FA-related human disorders.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Anemia de Fanconi , RNA Helicases DEAD-box , Dano ao DNA/genética , DNA Helicases/genética , Reparo do DNA/genética , Anemia de Fanconi/genética , Instabilidade Genômica , Células HeLa , Humanos
20.
Mol Cell ; 76(4): 632-645.e6, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31519521

RESUMO

Similar to ubiquitin, SUMO forms chains, but the identity of SUMO-chain-modified factors and the purpose of this modification remain largely unknown. Here, we identify the budding yeast SUMO protease Ulp2, able to disassemble SUMO chains, as a DDK interactor enriched at replication origins that promotes DNA replication initiation. Replication-engaged DDK is SUMOylated on chromatin, becoming a degradation-prone substrate when Ulp2 no longer protects it against SUMO chain assembly. Specifically, SUMO chains channel DDK for SUMO-targeted ubiquitin ligase Slx5/Slx8-mediated and Cdc48 segregase-assisted proteasomal degradation. Importantly, the SUMOylation-defective ddk-KR mutant rescues inefficient replication onset and MCM activation in cells lacking Ulp2, suggesting that SUMO chains time DDK degradation. Using two unbiased proteomic approaches, we further identify subunits of the MCM helicase and other factors as SUMO-chain-modified degradation-prone substrates of Ulp2 and Slx5/Slx8. We thus propose SUMO-chain/Ulp2-protease-regulated proteasomal degradation as a mechanism that times the availability of functionally engaged SUMO-modified protein pools during replication and beyond.


Assuntos
Replicação do DNA , DNA Fúngico/biossíntese , Endopeptidases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sumoilação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA Fúngico/genética , Endopeptidases/genética , Regulação Fúngica da Expressão Gênica , Mutação , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...