Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 8(8): e10140, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36042719

RESUMO

Over the past decade, the nano zerovalent copper has emerged as an effective nano-catalyst for the environment remediation processes due to its ease of synthesis, low cost, controllable particle size and high reactivity despite its release during the remediation process and related concentration dependent toxicities. However, the improvised techniques involving the use of supports or immobilizer for the synthesis of Cu0 has significantly increased its stability and motivated the researchers to explore the applicability of Cu0 for the environment remediation processes, which is evident from access to numerous reports on nano zerovalent copper mediated remediation of contaminants. Initially, this review allows the understanding of the various resources used to synthesize zerovalent copper nanomaterial and the structure of Cu0 nanoparticles, followed by focus on the reaction mechanism and the species involved in the contaminant remediation process. The studies comprehensively presented the application of nano zerovalent copper for remediation of organic/inorganic contaminants in combination with various oxidizing and reducing agents under oxic and anoxic conditions. Further, it was evaluated that the immobilizers or support combined with various irradiation sources originates a synergistic effect and have a significant effect on the stability and the redox properties of nZVC in the remediation process. Therefore, the review proposed that the future scope of research should include rigorous focus on deriving an exact mechanism for synergistic effect for the removal of contaminants by supported nZVC.

2.
Environ Sci Pollut Res Int ; 28(44): 63422-63436, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34231145

RESUMO

Pistachio shell powder supported nano-zerovalent copper (ZVC@PS) material prepared by borohydride reduction was characterized using SEM, FTIR, XRD, TGA/DTA, BET, and XPS. SEM, XRD, and XPS revealed the nano-zerovalent copper to consist of a core-shell structure with CuO shell and Cu(0) core with a particle size of 40-100 nm and spherical morphology aggregated on PS biomass. ZVC@PS was found to contain 39% (w/w %) Cu onto the pistachio shell biomass. Batch sorption of Cr(VI) from the aqueous using ZVC@PS was studied and was optimized for dose (0.1-0.5 g/L), initial Cr(VI) concentration(1-20 mg/L), and pH (2-12). Optimized conditions were 0.1 g/L doses of sorbent and pH=3 for Cr(VI) adsorption. Langmuir and Freundlich adsorption isotherm models fitted well to the adsorption behavior of ZVC@PS for Cr(VI) with a pseudo-second-order kinetic behavior. ZVC@PS (0.1g/L) exhibits qmax for Cr(VI) removal up to 110.9 mg/g. XPS and other spectroscopic evidence suggest the adsorption of Cr(VI) by pistachio shell powder, coupled with reductive conversion of Cr(VI) to Cr(III) by ZVC particles to produce a synergistic effect for the efficient remediation of Cr(VI) from aqueous medium.


Assuntos
Pistacia , Poluentes Químicos da Água , Adsorção , Cromo/análise , Cobre , Concentração de Íons de Hidrogênio , Cinética , Pós , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...