Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 361: 127675, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35878767

RESUMO

In the present study, yard waste was pretreated by thermo-chemo-sonic pretreatment prior to anaerobic digestion to improve its anaerobic biodegradability. First, the pretreatment conditions were optimized using Box-Behnken design based response surface methodology for the maximum organic matter solubilisation. Then, the possible mechanism of delignification by thermo-chemo-sonic pretreatment was discussed. Moreover, the anaerobic digestion performance of untreated yard waste (UYW) and pretreated yard waste (PYW) was compared. The optimum pretreatment condition based on the increase in soluble COD and volatile solids (VS) was: 2997 kJ/kgTS ultrasonic energy, 74 °C, and 10.1 pH. The highest methane yield of 374 ± 28 mL/gVSadded for the PYW at the optimum condition was achieved, which was 37.5 % higher than the UYW (272 ± 16 mL/gVSadded). Finally, the environmental impacts associated with anaerobic digestion of both UYW and PYW were compared. The life cycle assessment confirmed a positive environmental impact of pretreatment.


Assuntos
Lignina , Metano , Anaerobiose , Meio Ambiente , Esgotos
2.
Bioresour Technol ; 359: 127496, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35718247

RESUMO

The presence of furfural in the hydrolysates obtained from lignocellulosic biomass sources represents an enormous challenge during their fermentation because furfural is a toxic compound for different microorganisms. Rhodosporidium toruloides-1588 can grow and accumulate lipids using wood hydrolysate as a substrate containing up to 1 g/L of furfural. In this study, the capacity of R. toruloides-1588 to grow and accumulate lipids using furfural without glucose in the media has been observed. R. toruloides-1588 degraded up to 3 g/L of furfural into furfuryl alcohol (1.8 g/L) and 2-furoic acid (0.9 g/L). Furthermore, R. toruloides-1588 accumulated 52% and 30% of its dry weight into lipids using YM media and YM media without glucose, respectively. Fatty acids such as palmitic, stearic and oleic were the most abundant. Finally, R. toruloides-1588 could potentially utilize furfural as a carbon source.


Assuntos
Furaldeído , Rhodotorula , Furaldeído/farmacologia , Glucose , Lipídeos
3.
Bioresour Technol ; 356: 127305, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35562026

RESUMO

In order to identify the most environmental-friendly pretreatment for pyrolsis of wood residue to levoglucosan (LG), for the first time a comparative life cycle assessment (LCA) was carried out for hot water treatment (HWT), torrefaction, acid pretreatment (AP) and salt pretreatment (SP) pathways. Since LG production can facilitate both resource recovery (RR) and wood residue handling (WRH), two different functional units (FUs), i.e., 1 kg LG production and 1 kg wood residue handling were considered. AP was found to generate the least global warming potential of 134.60 kg CO2-eq and human carcinogenic toxicity of 0.59 kg 1,4-dichlorobenzene-eq. for RR perspective. However, for WRH perspective, HWT was found to be the best pretreatment (6.39 kg CO2-eq; 0.03 kg 1,4-dichlorobenzene-eq.). Sensitivity analysis revealed that a reduction in electricity consumption by 15% could reduce the overall impacts by 14.00-14.82 %. This study also highlights the impact of goal and FU selection on LCA.


Assuntos
Pirólise , Madeira , Animais , Biomassa , Dióxido de Carbono/análise , Glucose/análogos & derivados , Humanos , Estágios do Ciclo de Vida , Madeira/química
4.
Bioengineered ; 13(7-12): 14987-15002, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37105768

RESUMO

Acidogenic fermentation of food waste using mixed microbial cultures can produce carboxylates [or volatile fatty acids (VFA)] as high-valued bioproducts via a complex interplay of microorganisms during different stages of this process. However, the present fermentation systems are incapable of reaching the industrially relevant VFA production yields of ≥50 g/L primarly due to the complex process operation, competitive metabolic pathways, and limited understanding of microbial interplays. Recent reports have demonstrated the significant roles played by microbial communities from different phyla, which work together to control the process kinetics of various stages underlying acidogenic fermentation. In order to fully delineate the abundance, structure, and functionality of these microbial communities, next-generation high-throughput meta-omics technologies are required. In this article, we review the potential of metagenomics and metatranscriptomics approaches to enable microbial community engineering. Specifically, a deeper analysis of taxonomic relationships, shifts in microbial communities, and differences in the genetic expression of key pathway enzymes under varying operational and environmental parameters of acidogenic fermentation could lead to the identification of species-level functionalities for both cultivable and non-cultivable microbial fractions. Furthermore, it could also be used for successful gene sequence-guided microbial isolation and consortium development for bioaugmentation to allow VFA production with high concentrations and purity. Such highly controlled and engineered microbial systems could pave the way for tailored and high-yielding VFA synthesis, thereby creating a petrochemically competitive waste-to-value chain and promoting the circular bioeconomy.Research HighlightsMixed microbial mediated acidogenic fermentation of food waste.Metagenomics and metatranscriptomics based microbial community analysis.Omics derived function-associated microbial isolation and consortium engineering.High-valued sustainable carboxylate bio-products, i.e. volatile fatty acids.


Assuntos
Alimentos , Eliminação de Resíduos , Fermentação , Metabolismo dos Carboidratos , Ácidos , Ácidos Graxos Voláteis/metabolismo , Ácidos Carboxílicos , Reatores Biológicos , Concentração de Íons de Hidrogênio , Esgotos
5.
Environ Toxicol Chem ; 40(12): 3434-3440, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34606656

RESUMO

Pressures from anthropogenic activities are causing degradation of estuarine and coastal ecosystems around the world. Trace metals are key pollutants that are released and can partition in a range of environmental compartments, to be ultimately accumulated in exposed biota. The level of pressure varies with locations and the range and intensity of anthropogenic activities. The present study measured residues of trace metals in Mytilus mussel species collected from a range of locations around the world in areas experiencing a gradient of anthropogenic pressures that we classified as low, moderate, or high impact. The data showed no grouping/impact level when sampling sites in all countries were incorporated in the analysis, but there was significant clustering/impact level for most countries. Overall, high-impact areas were characterized by elevated concentrations of zinc, lead, nickel, and arsenic, whereas copper and silver were detected at higher concentrations in medium-impact areas. Finally, whereas most metals were found at lower concentrations in areas classified as low impact, cadmium was typically elevated in these areas. The present study provides a unique snapshot of worldwide levels of coastal metal contamination through the use of Mytilus species, a well-established marine biomonitoring tool. Environ Toxicol Chem 2021;40:3434-3440. © 2021 SETAC.


Assuntos
Metais Pesados , Mytilus , Oligoelementos , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Metais Pesados/análise , Mytilus/metabolismo , Oligoelementos/análise , Poluentes Químicos da Água/análise
6.
J Environ Chem Eng ; 9(5): 106063, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34307017

RESUMO

Under the current pandemic situation caused by the novel coronavirus SARS-CoV-2, wastewater monitoring has been increasingly investigated as a surveillance tool for community-wide disease prevalence. After a year into the pandemic, this review critically discusses the real progress made in the detection of SARS-CoV-2 using wastewater monitoring. The limitations and the key challenges faced in improving the detection methods are highlighted. As per the literature, the complex nature of the wastewater matrix poses problems in processing the samples and achieving high sensitivity at low loads of viral RNA using the current detection methods. Furthermore, in the absence of a gold standard analytical method for wastewater, the validation of the generated data for use in wastewater-based epidemiological modeling of the disease becomes practically difficult. However, research is advancing in adopting clinical methods to the wastewater by using appropriate processing controls, and recovery methods. Besides, the technological advances made by the industry including the development of PCR kits with improved detection limits, easy-to-use viral RNA concentration methods, ability to detect the coronavirus variants, and artificial intelligence and advanced data modeling for continuous and remote monitoring greatly help to debottleneck some of these problems. Currently, these technologies are limited to healthcare systems, however, their use for wastewater monitoring is expected to provide opportunities for wide-scale applications of wastewater-based epidemiology (WBE). Moreover, the data from wastewater monitoring act as the initial checkpoint for human health even before the appearance of symptoms, hence WBE needs more attention to manage current and future infectious transmissions.

7.
Biodegradation ; 32(5): 563-576, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34086180

RESUMO

Unconventional oils such as diluted bitumen from oil sands differs from most of conventional oils in terms of physiochemical properties and PAHs composition. This raises concerns regarding the effectiveness of current remediation strategies and protocols originally developed for conventional oil. Here we evaluated the efficiency of different biotreatment approaches, such as fungi inoculation (bioaugmentation), sludge addition (bioaugmentation/biostimulation), perennial grasses plantation (phytoremediation) and their combinations as well as natural attenuation (as control condition), for the remediation of soil contaminated by synthetic crude oil (a product of diluted bitumen) in laboratory microcosms. We specifically monitored the PAHs loss percentage (alkylated PAHs and unsubstituted 16 EPA Priority PAHs), the residue of PAHs and evaluated the ecotoxicity of soil after treatment. All treatments were highly efficient with more than ~ 80% of ∑PAHs loss after 60 days. Distinctive loss efficiencies between light PAHs (≤ 3 rings, ~ 96% average loss) and heavy PAHs (4-6 rings, ~ 29% average loss) were observed. The lowest average PAHs residue (0.10 ± 0.02 mg·kg-1, for an initial concentration of 0.29 ± 0.12 mg·kg-1) was achieved with the "sludge-plants (grasses)" combination. Sludge addition was the only treatment that achieved significantly lower ecotoxicity (3% ± 4% of growth inhibition of L. sativa) than the control (natural attenuation, 13% ± 4% of inhibition). Sludge addition, grasses plantation and "sludge-fungi combination" treatments could result in lower PAH exposure (than other treatments) in post-treated soil when using the Canadian Soil Quality Guidelines for the protection of environmental and human health for potentially carcinogenic and other PAHs.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Biodegradação Ambiental , Canadá , Humanos , Hidrocarbonetos , Campos de Petróleo e Gás , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Poluentes do Solo/análise
8.
Waste Manag ; 121: 237-247, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33385952

RESUMO

In the present study, the potential use of cellulosic microfibers (CMFs) extracted from hemp fiber (HF) and pulp and paper solid waste (mixed sludge (MS), deinked sludge (DS)) as a reinforcing agent in novel bio composite materials produced from recycled Polylactic acid (rPLA) was investigated. CMFs were extracted and treated using physicochemical method followed by enzymatic treatment with laccase and cellulase. The effects of CMFs concentrations (1.5, 3 and 6% w/w) and fiber size (75 µm-1.7 mm) on the mechanical properties (impact and tensile) and biodegradability of the biocomposite samples were investigated. A modified interfacial adhesion between rPLA matrix and the three fibers used, was clearly observed through mechanical tests due to alkali and enzymatic treatments. The use of different types of enzymatically treated cellulosic fibers for polylactic acid (PLA) recycling was assessed by Scaning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The combined physicochemical and enzymatic treatments led to a considerable size reduction of the cellulosic fibers (HF, MS and DS) resulting in the enhanced interfacial adhesion between rPLA matrix and fibers. The biocomposite obtained with rPLA with HF gave the most favorable values for Young's modulus (324.53 ± 3.10 MPa, p-value 0.03), impact strength (27.61 ± 2.94 kJ/m2, p-value 0.01) and biodegradation rate (1.97%).


Assuntos
Poliésteres , Reciclagem , Estudos de Viabilidade , Difração de Raios X
9.
Bioresour Technol ; 313: 123638, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32534757

RESUMO

Lignocellulosic biomass has been used to produce biomolecules of industrial interest through thermochemical, biological, and chemical transformation. However, few works have been developed over lignin fractionation to obtain monolignols with commercial potentials, such as sinapyl, coniferyl, and p-coumaryl alcohols. This study is focused on developing a thermochemical method to delignify biomass. Additionally, an oxidative treatment with ozone was studied to increase the release of monolignol compounds. The results showed that with 30 sec of ozonation in liquid samples from softwood sawdust a total concentration of 368.50 ± 0.73 mg/kg of monolignols was released after microwave-assisted extraction (256.5 ± 0.51 mg/kg of sinapyl alcohol and 112 ± 0.22 mg/kg of coniferyl alcohol) and 629.20 ± 0.21 mg/kg was released after thermal treatment (453.70 ± 0.15 mg/kg of sinapyl alcohol and 175.5 ± 0.06 mg/kg of coniferyl alcohol). For p-coumaryl alcohol, 16.32 mg/kg was obtained only in hardwood samples. The results of the present study showed that ozonolysis improves monolignols release from forestry residues.


Assuntos
Lignina , Ozônio , Biomassa , Agricultura Florestal , Estresse Oxidativo
10.
Data Brief ; 26: 104347, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31516937

RESUMO

Lignocellulosic biomass is a promising alternative for the replacement of limited fossil resources to produce various chemical compounds, such as 5-hydroxymethylfurfural, furfural, vanillin, vanillic acid, ferulic acid, syringaldehyde, and 4-aminobenzoic acid. However, the complex biomass structure is a limitation to making effective use of this naturally found feedstock. This research presents a data set of different compounds obtained directly from forest residues, with special emphasis on achieving effective utilization of the biomass. The extraction method and the catalyst are considered as the two main factors in this valorization process.

11.
J Infect Public Health ; 12(6): 897-899, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31078492

RESUMO

Most of the waterborne fecal pathogens belong to the family of Gram-negative bacteria. Hence, minimal inhibitory concentrations of chlortetracycline and ciprofloxacin antibiotics towards Gram-negative representative, Enterobacter aerogenes were estimated, which were 7 µg/ml and 0.125 µg/ml, respectively. The combined antimicrobial effect of chlortetracycline and ciprofloxacin against E. aerogenes was also investigated to establish their potential interaction towards the pathogens present in water. Eventually, the water samples obtained from various drinking water treatment plants from Québec municipality were tested for the occurrence of chlortetracycline-, ciprofloxacin- and chlortetracycline/ciprofloxacin-resistant strains.


Assuntos
Antibacterianos/farmacologia , Clortetraciclina/farmacologia , Ciprofloxacina/farmacologia , Água Potável/microbiologia , Farmacorresistência Bacteriana , Enterobacter aerogenes/efeitos dos fármacos , Enterobacter aerogenes/isolamento & purificação , Testes de Sensibilidade Microbiana , Quebeque
12.
Int J Biol Macromol ; 115: 563-571, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29689286

RESUMO

Nanotechnology-inspired biocatalytic systems attracted attention for many applications since nanosized supports for enzyme immobilization can improve efficiency-determining factors e.g. enhancing the surface area and loading capacity and reducing the mass transfer resistance. Among the nanomaterials, nanobiochar has unique features as a support for enzyme immobilization i.e. high surface to volume ratio, porous structure, and presence of functional groups on its surface. However, the performance of the immobilization is highly dependent on the immobilization conditions and the properties of the enzyme and the support material. In this research, crude laccase was covalently immobilized onto functionalized nanobiochar using a two-step method of diimide-activated amidation. The effect of different parameters was investigated. The optimal conditions were found to be 14 mg/mL of laccase concentration, 5 mg/mL of nanobiochar, 8.2 mM of cross-linker and 3 h of contact time. For investigating the pH, thermal, storage, and operational stability, the sample obtained from the optimized conditions was used. The results showed the higher stability of immobilized laccase against temperature and pH variation compared to free laccase. In addition, immobilized laccase maintained its catalytic performance up to seven cycles of utilization and showed more than 50% of initial activity after two months of room temperature storage.


Assuntos
Carvão Vegetal/química , Enzimas Imobilizadas/química , Lacase/química , Nanoestruturas/química , Pinus/química , Madeira/química , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Lacase/metabolismo , Nanotecnologia , Temperatura , Trametes/enzimologia
13.
Sci Total Environ ; 584-585: 393-401, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28117156

RESUMO

Biocatalytic treatment with oxidoreductase enzymes, especially laccases are an environmentally benign method for biodegradation of pharmaceutical compounds, such as carbamazepine to less harmful compounds. However, enzymes are required to be immobilized on supports to be reusable and maintain their activity. Functionalization of support prior to immobilization of enzyme is highly important because of biomolecule-support interface on enzyme activity and stability. In this work, the effect of oxidation of nanobiochar, a carbonaceous material produced by biomass pyrolysis, using HCl, H2SO4, HNO3 and their mixtures on immobilization of laccase has been studied. Scanning electron microscopy indicated that the structure of nanobiochars remained intact after oxidation and Fourier transform infrared spectroscopy confirmed the formation of carboxylic groups because of acid treatment. Titration measurements showed that the sample treated with H2SO4/HNO3 (50:50, v/v) had the highest number of carboxylic groups (4.7mmol/g) and consequently the highest efficiency for laccase immobilization. Additionally, it was observed that the storage, pH and thermal stability of immobilized laccase on functionalized nanobiochar was improved compared to free laccase showing its potential for continuous applications. The reusability tests towards oxidation of 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) showed that the immobilized laccase preserved 70% of the initial activity after 3cycles. Finally, using immobilized laccase for degradation of carbamazepine exhibited 83% and 86% removal in spiked water and secondary effluent, respectively.

14.
Ultrason Sonochem ; 34: 380-388, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27773260

RESUMO

The synergistic effects were evaluated during the oxidation of carbamazepine using a sono-electrochemical process. The sono-electrochemical oxidation was performed using two types of experimental units (having 1L and 100L of working volume, respectively) and containing one anode (Ti/PbO2) and one cathode (Ti). Different operating parameters, including power of ultrasounds, current intensity and reaction time were investigated. The degree of synergy increased when the current intensity decreased, whereas it increased with the power of ultrasounds imposed. The highest value of the synergy degree (33%) was recorded for the lowest current intensity (1.0A) and the highest power of ultrasounds (40W). Likewise, the benefits of ultrasound were observed during a long-term period of treatment of CBZ (30days of experiments without interruption). A relatively high degradation rate was recorded using the sono-electrochemical process (99.5%) (at I=1A, P=40W), compared to a percentage of CBZ degradation of 91% recorded during electrolysis alone (at I=1A, P=0W). Likewise, the scanning electron microscopy views and the measurements of the electrochemical impedance spectroscopy (EIS) revealed that there are not impurities deposited on the surface of electrode in the present of ultrasounds.


Assuntos
Carbamazepina/química , Sonicação , Poluentes Químicos da Água/química , Eletroquímica , Oxirredução , Fatores de Tempo , Purificação da Água
15.
Waste Manag ; 49: 537-544, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26818183

RESUMO

Biochar microparticles were prepared from three different types of biochar, derived from waste materials, such as pine wood (BC-PW), pig manure (BC-PM) and cardboard (BC-PD) under various pyrolysis conditions. The microparticles were prepared by dry grinding and sequential sieving through various ASTM sieves. Particle size and specific surface area were analyzed using laser particle size analyzer. The particles were further characterized using scanning electron microscope (SEM). The adsorption capacity of each class of adsorbent was determined by methylene blue adsorption tests in comparison with commercially available activated carbon. Experimental results showed that dye adsorption increased with initial concentration of the adsorbate and biochar dosage. Biochar microparticles prepared from different sources exhibited improvement in adsorption capacity (7.8±0.5 mg g(-1) to 25±1.3 mg g(-1)) in comparison with raw biochar and commercially available activated carbon. The adsorption capacity varied with source material and method of production of biochar. The maximum adsorption capacity was 25 mg g(-1) for BC-PM microparticles at 25°C for an adsorbate concentration of 500 mg L(-1) in comparison with 48.30±3.6 mg g(-1) for activated carbon. The equilibrium adsorption data were best described by Langmuir model for BC-PM and BC-PD and Freundlich model for BC-PW.


Assuntos
Carvão Vegetal/química , Incineração , Azul de Metileno/química , Material Particulado/química , Resíduos/análise , Adsorção , Animais , Carvão Vegetal/análise , Esterco/análise , Azul de Metileno/análise , Papel , Tamanho da Partícula , Material Particulado/análise , Pinus , Suínos , Madeira/análise
16.
J Chromatogr A ; 1433: 106-13, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26805597

RESUMO

Diclofenac (DCF), a prevalent non-steroidal anti-inflammatory drug (NSAID) is often detected in wastewater and surface water. Analysis of the pharmaceuticals in complex matrices is often laden with challenges. In this study a reliable, rapid and sensitive method based on laser diode thermal desorption/atmospheric pressure chemical ionization (LDTD/APCI) coupled with tandem mass spectrometry (MS/MS) has been developed for the quantification of DCF in wastewater and wastewater sludge. An established conventional LC-ESI-MS/MS (liquid chromatography-electrospray ionization-tandem mass spectrometry) method was compared with LDTD-APCI-MS/MS approach. The newly developed LDTD-APCI-MS/MS method reduced the analysis time to 12s in lieu of 12 min for LC-ESI-MS/MS method. The method detection limits for LDTD-APCI-MS/MS method were found to be 270 ng L(-1) (LOD) and 1000 ng L(-1) (LOQ). Furthermore, two extraction procedures, ultrasonic assisted extraction (USE) and accelerated solvent extraction (ASE) for the extraction of DCF from wastewater sludge were compared and ASE with 95.6 ± 7% recovery was effective over USE with 86 ± 4% recovery. The fate and partitioning of DCF in wastewater (WW) and wastewater sludge (WWS) in wastewater treatment plant was also monitored at various stages of treatment in Quebec Urban community wastewater treatment plant. DCF exhibited affinity towards WW than WWS with a presence about 60% of DCF in WW in contrary with theoretical prediction (LogKow=4.51).


Assuntos
Anti-Inflamatórios não Esteroides/análise , Diclofenaco/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Pressão Atmosférica , Cromatografia Líquida/métodos , Lasers Semicondutores , Esgotos/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem/métodos
17.
Sci Total Environ ; 547: 60-77, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26789358

RESUMO

Pharmaceutically active compounds (PhACs), which find their way easily into the water sources, are emerging as a major concern for drinking water quality and aquatic species. Therefore, their removal from water sources is a priority from environmental point of view. During the past decade, different methods including membrane separation, adsorption systems and chemical transformation have been evaluated for removal of these compounds. This paper reviews different aspects of PhAC removal by using membrane separation processes, as they have been conventionally known to show high potential in the production of superior quality drinking and industrial water. In brief, osmosis membranes can efficiently remove almost all PhACs though its operational cost is relatively high and nanofiltration (NF) membranes are highly influenced by electrostatic and hydrophobic interaction. Moreover, the efficiency of membrane bioreactors (MBRs) is difficult to predict due to the complex interaction of compounds with microorganisms. To improve the performance and robustness of membrane technology, it is suggested to combine membranes with other systems, such as activated carbon and enzymatic degradation.


Assuntos
Filtração/instrumentação , Preparações Farmacêuticas/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Águas Residuárias/química
18.
Beilstein J Nanotechnol ; 7: 1556-1563, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28144506

RESUMO

Adsorptive membranes have many applications in removal of contaminants, such as heavy metals and organic contaminants from water. Recently, increasing concentrations of pharmaceutically active compounds, especially antibiotics, such as chlortetracycline in water and wastewater sources has raised concerns about their potentially adverse impacts on environment and human health. In this study, a series of polyacrylonitrile (PAN)/activated biochar nanofibrous membranes (NFMs) with different loadings of biochar (0-2%, w/w) were fabricated using electrospinning. The morphology and structure of fabricated membranes was investigated by scanning electron microscopy, Fourier transform infrared and thermogravimetric analysis. The results showed that at 1.5% of biochar loading, the surface area reached the maximum value of 12.4 m2/g and beyond this loading value, agglomeration of particles inhibited fine interaction with nanofibrous matrix. Also, the adsorption tests using chlortetracycline showed that, under environmentally relevant concentrations, the fabricated adsorptive NFMs had a potential for removal of these types of emerging contaminants from water and wastewaters.

19.
J Environ Sci Health B ; 49(11): 889-96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25190564

RESUMO

Biopesticides are usually sprayed on forests by using planes made up of aluminum alloy. Bioval derived from starch industry wastewater (SIW) in suspension form was developed as stable anticorrosive biopesticide formulation. In this context, various anticorrosion agents such as activated charcoal, glycerin, ethylene glycol, phytic acid, castor oil and potassium silicate were tested as anticorrosive agents. There was no corrosion found in Bioval formulation where potassium silicate (0.5% w/v) was added and compared with Foray 76 B, as an industrial standard, when stored over 6 months. In relation to other parameters, the anticorrosion formulation of Bioval+buffer+KSi reported excellent zeta potential (-33.19 ± 4 mV) and the viscosity (319.13 ± 32 mPa.s) proving it's stability over 6 months, compared to the standard biopesticide Foray 76 B (-36.62 ± 4 mV potential zeta, pH 4.14 ± 0.1 and 206 ± 21 mPa.s viscosity). Metal analysis of the different biopesticides showed that Bioval+buffer+KSi has no corrosion (5.11 ± 0.5 mg kg(-1) of Al and 13.53 ± 1.5 mg kg(-1) of Fe) on the aluminum alloy due to the contribution of sodium acetate buffer at pH 5. The bioassays reported excellent results for Bioval+Buffer+KSi (2.95 ± 0.3 × 10(9) CFU mL(-1) spores and 26.6 ± 2.7 × 10(9) IU L(-1) Tx) compared with initial Bioval (2.46 ± 0.3 × 10(9) CFU mL(-1) spores and 23.09 ± 3 × 10(9) IU L(-1) Tx) and Foray 76 B (2.3 ± 0.2 × 10(9) CFU mL(-1) spores and 19.950 ± 2.1 UI L(-1) Tx) which was due to the break-up of the external chitinous membrane due to abrasive action of potassium silicate after ingestion by insects. The contribution of sodium acetate buffer and potassium silicate (0.5% and at pH = 5) as anticorrosion agent in the Bioval allowed production of an efficient biopesticide with a reduced viscosity and favorable pH as compared to Foray 76 B which enhanced the entomotoxic potential against spruce budworm (SB) larvae (Lepidoptera: Choristoneura fumiferana).


Assuntos
Bacillus thuringiensis/química , Inseticidas/química , Inseticidas/farmacologia , Mariposas/efeitos dos fármacos , Águas Residuárias/química , Animais , Agentes de Controle Biológico , Corrosão , Larva/efeitos dos fármacos , Mariposas/crescimento & desenvolvimento , Amido/química
20.
J Environ Manage ; 131: 25-32, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24140484

RESUMO

The objective of this work was to evaluate the potential of a sonochemical oxidation process for the degradation of carbamazepine (CBZ). Several factors, such as electrical power, treatment time, pH and initial concentration of CBZ were investigated. Using a 2(4) factorial matrix, the best performance for CBZ degradation (90.1% of removal) was obtained with an electrical power of 40 W, a treatment time of 120 min and an initial pH of 10.0 imposed in the presence of 6.0 mg L(-1) of CBZ. The treatment time and the calorimetric power were the most influential parameters on the degradation rate of CBZ. Subsequently, the optimal experimental parameters for CBZ degradation were investigated using central composite design. The sonochemical oxidation process, applied under optimal operating conditions (at an electrical power of 43 W for 116 min), oxidized 86 and 90% of the initial CBZ concentration of 5.62 mg L(-1) and 8.05 µg L(-1), respectively. During the sonochemical process, CBZ was primarily transformed into anthranilic acid and acridine.


Assuntos
Carbamazepina/química , Poluentes Químicos da Água/química , Radical Hidroxila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...