Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pediatr Nephrol ; 35(11): 2031-2042, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31807928

RESUMO

The advent of a new class of aminoglycosides with increased translational readthrough of nonsense mutations and reduced toxicity offers a new therapeutic strategy for a subset of patients with hereditary kidney disease. The renal uptake and retention of aminoglycosides at a high intracellular concentration makes the kidney an ideal target for this approach. In this review, we explore the potential of aminoglycoside readthrough therapy in a number of hereditary kidney diseases and discuss the therapeutic window of opportunity for subclasses of each disease, when caused by nonsense mutations.


Assuntos
Aminoglicosídeos/uso terapêutico , Antibacterianos/uso terapêutico , Nefropatias/tratamento farmacológico , Aminoglicosídeos/farmacocinética , Antibacterianos/farmacocinética , Códon sem Sentido/efeitos dos fármacos , Humanos , Nefropatias/genética
2.
PLoS One ; 14(12): e0223954, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31800572

RESUMO

BACKGROUND: Cystinosis is a rare disorder caused by recessive mutations of the CTNS gene. Current therapy decreases cystine accumulation, thus slowing organ deterioration without reversing renal Fanconi syndrome or preventing eventual need for a kidney transplant.15-20% of cystinosis patients harbour at least one nonsense mutation in CTNS, leading to premature end of translation of the transcript. Aminoglycosides have been shown to permit translational read-through but have high toxicity level, especially in the kidney and inner ear. ELX-02, a modified aminoglycoside, retains it read-through ability without the toxicity. METHODS AND FINDINGS: We ascertained the toxicity of ELX-02 in cells and in mice as well as the effect of ELX-02 on translational read-through of nonsense mutations in cystinotic mice and human cells. ELX-02 was not toxic in vitro or in vivo, and permitted read-through of nonsense mutations in cystinotic mice and human cells. CONCLUSIONS: ELX-02 has translational read-through activity and produces a functional CTNS protein, as evidenced by reduced cystine accumulation. This reduction is comparable to cysteamine treatment. ELX-02 accumulates in the kidney but neither cytotoxicity nor nephrotoxicity was observed.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/fisiologia , Aminoglicosídeos/farmacologia , Cistina/metabolismo , Cistinose/tratamento farmacológico , Lisossomos/metabolismo , Mutação , Animais , Transporte Biológico , Cistinose/metabolismo , Cistinose/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Biossíntese de Proteínas
3.
Pediatr Nephrol ; 34(5): 873-881, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30413946

RESUMO

BACKGROUND: Cystinosis is an ultrarare disorder caused by mutations of the cystinosin (CTNS) gene, encoding a cystine-selective efflux channel in the lysosomes of all cells of the body. Oral therapy with cysteamine reduces intralysosomal cystine accumulation and slows organ deterioration but cannot reverse renal Fanconi syndrome nor prevent the eventual need for renal transplantation. A definitive therapeutic remains elusive. About 15% of cystinosis patients worldwide carry one or more nonsense mutations that halt translation of the CTNS protein. Aminoglycosides such as geneticin (G418) can bind to the mammalian ribosome, relax translational fidelity, and permit readthrough of premature termination codons to produce full-length protein. METHODS: To ascertain whether aminoglycosides permit readthrough of the most common CTNS nonsense mutation, W138X, we studied the effect of G418 on patient fibroblasts. RESULTS: G418 treatment induced translational readthrough of CTNSW138X constructs transfected into HEK293 cells and expression of full-length endogenous CTNS protein in homozygous W138X fibroblasts. CONCLUSIONS: Reduction in intracellular cystine indicates that the CTNS protein produced is functional as a cystine transporter. Interestingly, similar effects were seen even in W138X compound heterozygotes. These studies establish proof-of-principle for the potential of aminoglycosides to treat cystinosis and possibly other monogenic diseases caused by nonsense mutations.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/genética , Cistinose/tratamento farmacológico , Fibroblastos/efeitos dos fármacos , Gentamicinas/farmacologia , Terminação Traducional da Cadeia Peptídica/efeitos dos fármacos , Códon sem Sentido , Cistina/metabolismo , Cistinose/genética , Fibroblastos/metabolismo , Vetores Genéticos/genética , Gentamicinas/uso terapêutico , Células HEK293 , Humanos , Terminação Traducional da Cadeia Peptídica/genética , Plasmídeos/genética , RNA Mensageiro/análise , Proteínas Recombinantes/genética , Transfecção
4.
Mol Plant Pathol ; 19(6): 1414-1426, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28990722

RESUMO

Calcineurin is a conserved calcium/calmodulin-dependent protein phosphatase, consisting of a catalytic subunit A and a regulatory subunit B, which is involved in calcium-dependent signalling and regulation of various important cellular processes. In this study, we functionally characterized the catalytic subunit A (CnaA) of the endophytic fungus Epichloë festucae which forms a symbiotic association with the grass host Lolium perenne. We deleted the CnaA-encoding gene cnaA in E. festucae and examined its role in hyphal growth, cell wall integrity and symbiosis. This ΔcnaA strain had a severe growth defect with loss of radial growth and hyper-branched hyphae. Transmission electron microscopy and confocal microscopy analysis of the mutant revealed cell wall defects, aberrant septation and the formation of intrahyphal hyphae, both in culture and in planta. The mutant strain also showed a reduced infection rate in planta. The fluorescence of mutant hyphae stained with WGA-AF488 was reduced, indicating reduced chitin accessibility. Together, these results show that E. festucae CnaA is required for fungal growth, maintaining cell wall integrity and host colonization.


Assuntos
Calcineurina/química , Calcineurina/metabolismo , Epichloe/metabolismo , Hifas/metabolismo , Epichloe/genética , Epichloe/fisiologia , Regulação Fúngica da Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Hifas/genética , Hifas/ultraestrutura , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Simbiose/genética , Simbiose/fisiologia
5.
Mol Plant Microbe Interact ; 28(1): 69-85, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25303335

RESUMO

Epichloë festucae is a mutualistic symbiont that systemically colonizes the intercellular spaces of Lolium perenne leaves to form a highly structured and interconnected hyphal network. In an Agrobacterium tumefaciens T-DNA forward genetic screen, we identified a mutant TM1066 that had a severe host interaction phenotype, causing stunting and premature senescence of the host. Molecular analysis revealed that the mutation responsible for this phenotype was in the cell-wall integrity (CWI) mitogen-activated protein kinase kinase (MAPKK), mkkA. Mutants generated by targeted deletion of the mkkA or the downstream mpkA kinase recapitulated the phenotypes observed for TM1066. Both mutants were defective in hyphal cell­cell fusion, formed intrahyphal hyphae, had enhanced conidiation, and showed microcyclic conidiation. Transmission electron microscopy and confocal microscopy analysis of leaf tissue showed that mutant hyphae were more abundant than the wild type in the intercellular spaces and colonized the vascular bundles. Hyphal branches failed to fuse but, instead, grew past one another to form bundles of convoluted hyphae. Mutant hyphae showed increased fluorescence with AF488-WGA, indicative of increased accessibility of chitin, a hypothesis supported by changes in the cell-wall ultrastructure. These results show that the CWI MAPK pathway is a key signaling pathway for controlling the mutualistic symbiotic interaction between E. festucae and L. perenne.


Assuntos
Epichloe/fisiologia , Regulação Fúngica da Expressão Gênica , Lolium/microbiologia , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Simbiose , Sequência de Bases , Parede Celular/metabolismo , DNA Bacteriano , Epichloe/enzimologia , Epichloe/genética , Epichloe/crescimento & desenvolvimento , Epichloe/ultraestrutura , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Reporter , Hifas , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Mutagênese Insercional , Fenótipo , Folhas de Planta/microbiologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...