RESUMO
With the coexistence of multiple lineages and increased international travel, recombination and gene flow are likely to become increasingly important in the adaptive evolution of SARS-CoV-2. These processes could result in genetic introgression and the incipient parallel evolution of multiple recombinant lineages. However, identifying recombinant lineages is challenging, and the true extent of recombinant evolution in SARS-CoV-2 may be underestimated. This study describes the first SARS-CoV-2 Deltacron recombinant case identified in Brazil. We demonstrate that the recombination breakpoint is at the beginning of the Spike gene. The 5' genome portion (circa 22 kb) resembles the AY.101 (Delta), and the 3' genome portion (circa 8 kb nucleotides) is most similar to the BA.1.1 (Omicron). Furthermore, evolutionary genomic analyses indicate that the new strain emerged after a single recombination event between lineages of diverse geographical locations in December 2021 in South Brazil. This Deltacron, AYBA-RS, is one of the dozens of recombinants described in 2022. The submission of only four sequences in the GISAID database suggests that this lineage had a minor epidemiological impact. However, the recent emergence of this and other Deltacron recombinant lineages (XD, XF, and XS) suggests that gene flow and recombination may play an increasingly important role in the COVID-19 pandemic. We explain the evolutionary and population genetic theory that supports this assertion, concluding that this stresses the need for continued genomic surveillance. This monitoring is vital for countries where multiple variants are present, as well as for countries that receive significant inbound international travel.
RESUMO
Diagnostic yield of genetic studies for Charcot-Marie-Tooth disease (CMT) is little known, with a lack of epidemiological data to build better diagnostic strategies outside the United States and Europe. We aimed to evaluate the performance of two molecular diagnostic strategies for patients with CMT, and to characterize epidemiological findings of these conditions in southern Brazil. We performed a single-center cross-sectional study, in which 94 patients (55 families) with CMT suspicion were evaluated. Overall, the diagnostic yield of the combined strategy of Multiplex-ligation-dependent-probe-amplification (MLPA) of PMP22/GJB1/MPZ and GJB1/MPZ/PMP22 Sanger sequencing was 63.6% (28/44) for index cases with demyelinating/intermediate CMT suspicion (21 CMT1A-PMP22, 5 CMTX1-GJB1 and 2 with probably CMT1B-MPZ diagnosis). Five of the 11 index cases (45.4%) with axonal CMT had at least a possible diagnosis with next generation sequencing (NGS) panel of 104 inherited neuropathies-related genes (one each with CMT1A-PMP22, CMT2A-MFN2, CMT2K-GDAP1, CMT2U-MARS, CMT2W-HARS1). Detailed clinical, neurophysiological and molecular data of families are provided. Sequential molecular diagnosis strategies with MLPA plus target Sanger sequencing for demyelinating/intermediate CMT had high diagnostic yield, and almost half of axonal CMT families had at least a possible diagnosis with the comprehensive NGS panel. Most frequent subtypes of CMT in our region are CMT1A-PMP22 and CMTX1-GJB1.