Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Res ; 122(1): 31-46, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29158345

RESUMO

RATIONALE: Human cardiac mesenchymal cells (CMSCs) are a therapeutically relevant primary cell population. Diabetes mellitus compromises CMSC function as consequence of metabolic alterations and incorporation of stable epigenetic changes. OBJECTIVE: To investigate the role of α-ketoglutarate (αKG) in the epimetabolic control of DNA demethylation in CMSCs. METHODS AND RESULTS: Quantitative global analysis, methylated and hydroxymethylated DNA sequencing, and gene-specific GC methylation detection revealed an accumulation of 5-methylcytosine, 5-hydroxymethylcytosine, and 5-formylcytosine in the genomic DNA of human CMSCs isolated from diabetic donors. Whole heart genomic DNA analysis revealed iterative oxidative cytosine modification accumulation in mice exposed to high-fat diet (HFD), injected with streptozotocin, or both in combination (streptozotocin/HFD). In this context, untargeted and targeted metabolomics indicated an intracellular reduction of αKG synthesis in diabetic CMSCs and in the whole heart of HFD mice. This observation was paralleled by a compromised TDG (thymine DNA glycosylase) and TET1 (ten-eleven translocation protein 1) association and function with TET1 relocating out of the nucleus. Molecular dynamics and mutational analyses showed that αKG binds TDG on Arg275 providing an enzymatic allosteric activation. As a consequence, the enzyme significantly increased its capacity to remove G/T nucleotide mismatches or 5-formylcytosine. Accordingly, an exogenous source of αKG restored the DNA demethylation cycle by promoting TDG function, TET1 nuclear localization, and TET/TDG association. TDG inactivation by CRISPR/Cas9 knockout or TET/TDG siRNA knockdown induced 5-formylcytosine accumulation, thus partially mimicking the diabetic epigenetic landscape in cells of nondiabetic origin. The novel compound (S)-2-[(2,6-dichlorobenzoyl)amino]succinic acid (AA6), identified as an inhibitor of αKG dehydrogenase, increased the αKG level in diabetic CMSCs and in the heart of HFD and streptozotocin mice eliciting, in HFD, DNA demethylation, glucose uptake, and insulin response. CONCLUSIONS: Restoring the epimetabolic control of DNA demethylation cycle promises beneficial effects on cells compromised by environmental metabolic changes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Ácidos Cetoglutáricos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Oxigenases de Função Mista/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Timina DNA Glicosilase/metabolismo , Animais , Células Cultivadas , Citosina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Inibidores Enzimáticos/farmacologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Ácidos Cetoglutáricos/antagonistas & inibidores , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos
2.
Psychosom Med ; 79(8): 936-946, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28700459

RESUMO

OBJECTIVE: Inadequate immunoregulation and elevated inflammation may be risk factors for posttraumatic stress disorder (PTSD), and microbial inputs are important determinants of immunoregulation; however, the association between the gut microbiota and PTSD is unknown. This study investigated the gut microbiome in a South African sample of PTSD-affected individuals and trauma-exposed (TE) controls to identify potential differences in microbial diversity or microbial community structure. METHODS: The Clinician-Administered PTSD Scale for DSM-5 was used to diagnose PTSD according to Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition criteria. Microbial DNA was extracted from stool samples obtained from 18 individuals with PTSD and 12 TE control participants. Bacterial 16S ribosomal RNA gene V3/V4 amplicons were generated and sequenced. Microbial community structure, α-diversity, and ß-diversity were analyzed; random forest analysis was used to identify associations between bacterial taxa and PTSD. RESULTS: There were no differences between PTSD and TE control groups in α- or ß-diversity measures (e.g., α-diversity: Shannon index, t = 0.386, p = .70; ß-diversity, on the basis of analysis of similarities: Bray-Curtis test statistic = -0.033, p = .70); however, random forest analysis highlighted three phyla as important to distinguish PTSD status: Actinobacteria, Lentisphaerae, and Verrucomicrobia. Decreased total abundance of these taxa was associated with higher Clinician-Administered PTSD Scale scores (r = -0.387, p = .035). CONCLUSIONS: In this exploratory study, measures of overall microbial diversity were similar among individuals with PTSD and TE controls; however, decreased total abundance of Actinobacteria, Lentisphaerae, and Verrucomicrobia was associated with PTSD status.


Assuntos
Fezes/microbiologia , Microbioma Gastrointestinal , Trauma Psicológico/microbiologia , Transtornos de Estresse Pós-Traumáticos/microbiologia , Adulto , DNA Bacteriano , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , RNA Bacteriano , RNA Ribossômico 16S
3.
Epigenetics ; 12(2): 113-122, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27982725

RESUMO

Insufficient activity of the bone-forming osteoblasts leads to low bone mass and predisposes to fragility fractures. The functional capacity of human mesenchymal stem cells (hMSCs), the precursors of osteoblasts, may be compromised in elderly individuals, in relation with the epigenetic changes associated with aging. However, the role of hMSCs in the pathogenesis of osteoporosis is still unclear. Therefore, we aimed to characterize the genome-wide methylation and gene expression signatures and the differentiation capacity of hMSCs from patients with hip fractures. We obtained hMSCs from the femoral heads of women undergoing hip replacement due to hip fractures and controls with hip osteoarthritis. DNA methylation was explored with the Infinium 450K bead array. Transcriptome analysis was done by RNA sequencing. The genomic analyses revealed that most differentially methylated loci were situated in genomic regions with enhancer activity, distant from gene bodies and promoters. These regions were associated with differentially expressed genes enriched in pathways related to hMSC growth and osteoblast differentiation. hMSCs from patients with fractures showed enhanced proliferation and upregulation of the osteogenic drivers RUNX2/OSX. Also, they showed some signs of accelerated methylation aging. When cultured in osteogenic medium, hMSCs from patients with fractures showed an impaired differentiation capacity, with reduced alkaline phosphatase activity and poor accumulation of a mineralized matrix. Our results point to 2 areas of potential interest for discovering new therapeutic targets for low bone mass disorders and bone regeneration: the mechanisms stimulating MSCs proliferation after fracture and those impairing their terminal differentiation.


Assuntos
Metilação de DNA , Células-Tronco Mesenquimais/metabolismo , Fraturas por Osteoporose/genética , Transcriptoma , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Proliferação de Células , Células Cultivadas , Feminino , Estudo de Associação Genômica Ampla , Humanos , Células-Tronco Mesenquimais/fisiologia , Pessoa de Meia-Idade , Fraturas por Osteoporose/metabolismo
4.
Eur Heart J ; 36(16): 993-1000, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25411193

RESUMO

AIMS: We conducted a genome-wide analysis to identify differentially methylated genes in atherosclerotic lesions. METHODS: DNA methylation at promoters, exons and introns was identified by massive parallel sequencing. Gene expression was analysed by microarrays, qPCR, immunohistochemistry and western blots. RESULTS: Globally, hypomethylation of chromosomal DNA predominates in atherosclerotic plaques and two-thirds of genes showing over 2.5-fold differential in DNA methylation are up-regulated in comparison to healthy mammary arteries. The imprinted chromatin locus 14q32 was identified for the first time as an extensively hypomethylated area in atherosclerosis with highly induced expression of miR127, -136, -410, -431, -432, -433 and capillary formation-associated gene RTL1. The top 100 list of hypomethylated promoters exhibited over 1000-fold enrichment for miRNAs, many of which mapped to locus 14q32. Unexpectedly, also gene body hypermethylation was found to correlate with stimulated mRNA expression. CONCLUSION: Significant changes in genomic methylation were identified in atherosclerotic lesions. The most prominent gene cluster activated via hypomethylation was detected at imprinted chromosomal locus 14q32 with several clustered miRNAs that were up-regulated. These results suggest that epigenetic changes are involved in atherogenesis and may offer new potential therapeutic targets for vascular diseases.


Assuntos
Metilação de DNA/genética , MicroRNAs/genética , Placa Aterosclerótica/genética , Idoso , Estudos de Casos e Controles , Cromossomos Humanos Par 14/genética , Regulação para Baixo/genética , Éxons/genética , Feminino , Ontologia Genética , Loci Gênicos/genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , MicroRNAs/metabolismo , Proteínas da Gravidez/genética , Proteínas da Gravidez/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/metabolismo , Regulação para Cima/genética
5.
Epigenomics ; 6(6): 603-22, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25531255

RESUMO

DNA methylation is a stable covalent epigenetic modification of primarily CpG dinucleotides that has recently gained considerable attention for its use as a biomarker in different clinical settings, including disease diagnosis, prognosis and therapeutic response prediction. Although the advent of genome-wide DNA methylation profiling in primary disease tissue has provided a manifold resource for biomarker development, only a tiny fraction of DNA methylation-based assays have reached clinical testing. Here, we provide a critical overview of different analytical methods that are suitable for biomarker validation, including general study design considerations, which might help to streamline epigenetic marker development. Furthermore, we highlight some of the recent marker validation studies and established markers that are currently commercially available for assisting in clinical management of different cancers.


Assuntos
Metilação de DNA , Epigenômica/métodos , Epigenômica/normas , Neoplasias/genética , Biomarcadores , Ilhas de CpG , Epigênese Genética , Guias como Assunto , Humanos , Neoplasias/sangue , Estudos de Validação como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...