Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 106(11): 4237-4250, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35657436

RESUMO

Arbuscular mycorrhizal fungi (AMF) and beneficial bacteria are found naturally associated with most terrestrial plant roots. While it is now well known that bacteria colonize AMF and can form aggregates and biofilms, little is known about how interactions between bacterial communities and AMF take place under both in situ and in vitro conditions. We investigated the impact of inoculation with AMF-associated bacteria (AABs) of AMF by in vitro recreation of the interaction on synthetic growth media in a two-compartment Petri plate system. The inoculated AABs were found to be associated with the mycorrhizal co-culture and were found to migrate along growing AMF hyphae and to be associated with the spore surface. AABs differentially influenced the growth of the AMF and their functional capability demonstrated by analysis of phosphate solubilization, nitrogen fixation, and biofilm formation. We have thus characterized these important interactions adding to a further understanding of the synergistic relationship between the two cross-kingdom microbial partners. KEY POINTS: • An in vitro assay was utilized to recreate functional biofilms with AMF-associated bacteria. • AMF-associated bacteria formed a biofilm and enhanced sporulation of Rhizophagus irregularis. • AMF-bacterial interactions through biofilm formation influence the functional capability of both partners.


Assuntos
Micorrizas , Bactérias , Biofilmes , Raízes de Plantas/microbiologia , Simbiose
2.
J Environ Manage ; 275: 111300, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32871522

RESUMO

A growing concern on the deleterious effects of chemical inputs to the environment has been on the rise from the excessive use of chemical inputs leading to soil and water pollution, destruction to fauna and microbial communities, reduced soil fertility and increased crop disease susceptibility. In the Great Mekong Region (GMR), a large majority of the population relies on agriculture and faces severe challenges including decline in soil fertility, increased pests and diseases, leading to lower ecosystem productivity. In this region, over-dependence on chemical fertilizers also continues to impact negatively on soil health and the wider ecosystem. Agroecological practices, and beneficial microorganisms in particular, offer an affordable and sustainable alternative to mineral inputs for improved plant nutrition and soil health for optimal crop performance and sustainable production. Biofertilizers are a key component in integrated nutrient management as well as for increased economic benefits from reduced expenditure on chemical fertilizers, holistically leading to sustainable agriculture. To cope with the need for biofertilizer adoption for sustainable agricultural production, the countries in the GMR are putting efforts in promoting development and use of biofertilizers and making them available to farmers at affordable costs. Despite these efforts, farmers continue to use chemical fertilizers at high rates with the hope of increased yields instead of taking advantage of microbial products capable of providing plant nutrients while restoring or improving soil health. This study explored the current agricultural practices in the six countries in the GMR (China, Vietnam, Myanmar, Thailand, Cambodia and Lao PDR), the critical need for sustainable agroecological practices with a special emphasis on biofertilizers. We highlighted the current status, distribution, adoption and gaps of biofertilizer production in the GMR, in order to obtain an insight on the nature of biofertilizers, efficacy and production standards, adoption or lack of biofertilizers in the GMR.


Assuntos
Agricultura , Fertilizantes , Camboja , China , Tailândia , Vietnã
3.
Syst Appl Microbiol ; 43(1): 126043, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31796230

RESUMO

The genus Micromonospora has been found in nodules of several legumes and some new species of this genus were isolated from these plant organs. In this study we analysed the taxonomic diversity of Micromonospora strains isolated from alfalfa nodules in Spain and Australia on the basis of three phylogenetic markers, the rrs and gyrB genes and 16S-23S intergenic spacer (ITS). The genome analysis of selected strains representative of different clusters or lineages found after rrs, gyrB and ITS analyses confirmed the results obtained with these phylogenetic markers. They showed that the analysed strains belong to at least 18 Micromonospora species including previously described ones, such as Micromonospora noduli, Micromonospora ureilytica, Micromonospora taraxaci, Micromonospora zamorensis, Micromonospora aurantiaca and Micromonospora tulbaghiae. Most of these strains belong to undescribed species of Micromonospora showing the high taxonomic diversity of strains from this genus inhabiting alfalfa nodules. Although Micromonospora strains are not able to induce the formation of these nodules, and it seems that they do not contribute to fix atmospheric nitrogen, they could play a role related with the mechanisms of plant growth promotion and pathogen protection presented by Micromonospora strains isolated from legume nodules.


Assuntos
Biodiversidade , Medicago sativa , Micromonospora/classificação , Nódulos Radiculares de Plantas/microbiologia , Austrália , DNA Bacteriano/genética , DNA Espaçador Ribossômico/genética , Genes Bacterianos/genética , Genes Essenciais/genética , Micromonospora/genética , Micromonospora/isolamento & purificação , Hibridização de Ácido Nucleico , Filogenia , Análise de Sequência de DNA , Espanha
4.
Sci Total Environ ; 689: 970-979, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31280178

RESUMO

Biochar is a potential tool to mitigate climate change by enhancing C sequestration in soils, but its use as a soil amendment to improve soil fertility and crop yields is still a contentious subject. In North East (NE) Thailand, biochar has been promoted to restore soil fertility in rubber tree plantations. Despite this, there is scarce information on the impact of biochar application on the soil biota, particularly on microbial communities associated with rubber trees. The effects of increasing doses of biochar on microbial communities were investigated in a rubber tree plantation in NE Thailand, 28 months after application. Biochar application resulted in increases of soil pH and nutrient contents and also had an impact on both bacterial and fungal communities. Changes in microbial composition and structure were observed although fungal communities were more markedly affected than bacterial communities. The nature and magnitude of the observed changes were strongly related to soil properties (pH, soil moisture and P content), while biochar dose (5, 10 or 20 tons/ha) effect was not significant. Our results highlight the need for additional research for a better understanding of the impact of biochar application on soil microbial communities and further cascading effects on ecosystem functions.


Assuntos
Fenômenos Fisiológicos Bacterianos , Carvão Vegetal/administração & dosagem , Fungos/fisiologia , Hevea , Microbiota , Microbiologia do Solo , Relação Dose-Resposta a Droga , Hevea/crescimento & desenvolvimento , Micobioma , Solo/química , Tailândia
5.
Microbes Environ ; 33(4): 407-416, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30473566

RESUMO

Plant growth-promoting bacteria (PGPB) inhabit the rhizosphere of plants and are capable of enhancing plant growth through a number of mechanisms. A strain of Pseudomonas fluorescens DUS1-27 was identified as a potential PGPB candidate based on its ability to increase the growth of Brassica napus L. (canola) over that of uninoculated control plants in a soil-based system. The same P. fluorescens isolate was found to reduce plant growth in a hydroponic growth system, with plants showing the symptoms of a microbe-associated molecular pattern (MAMP) response to the bacteria. The amperometric quantification of H2O2, fluorescence-based total peroxidase assays, and quantification of catalase gene expression levels using qRT-PCR revealed that oxidative stress reduced plant growth in the hydroponic system. The addition of the cyanobacterium Nostoc punctiforme (known to have high catalase activity levels) in the hydroponic system as a co-inoculant reduced oxidative stress (49.7% decrease in H2O2 concentrations) triggered by the addition of P. fluorescens DUS1-27, thereby enabling plants to grow larger than uninoculated control plants. These results show the advantage of inoculating with multiple bacteria to promote plant growth and, for the first time, demonstrate that N. punctiforme beneficially assists plants under oxidative stress through its catalase activity in planta.


Assuntos
Brassica napus/crescimento & desenvolvimento , Brassica napus/microbiologia , Catalase/metabolismo , Interações entre Hospedeiro e Microrganismos/fisiologia , Nostoc/fisiologia , Estresse Oxidativo , Pseudomonas fluorescens/fisiologia , Brassica napus/enzimologia , Brassica napus/genética , Catalase/genética , Técnicas de Cocultura , Expressão Gênica , Peróxido de Hidrogênio/análise , Hidroponia , Interações Microbianas , Nostoc/enzimologia , Estresse Oxidativo/genética , Peroxidases/análise , Pseudomonas fluorescens/enzimologia
6.
Appl Microbiol Biotechnol ; 101(9): 3781-3800, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28150026

RESUMO

This study investigated the role of a novel metal-dependent catalase (Npun_R4582) that reduces hydrogen peroxide in the cyanobacterium Nostoc punctiforme. Quantitative real-time PCR showed that npun_R4582 relative mRNA levels were upregulated by over 16-fold in cells treated with either 2 µM added Co, 0.5 µM added Cu, 500 µM Mn, 1 µM Ni, or 18 µM Zn. For cells treated with 60 µM H2O2, no significant alteration in Npun_R4582 relative mRNA levels was detected, while in cells treated with Co, Cu, Mn, Ni, or Zn and 60 µM peroxide, relative mRNA levels were generally above control or peroxide only treated cells. Disruption or overexpression of npun_R4582 altered sensitivity to cells exposed to 60 µM H2O2 and metals for treatments beyond the highest viable concentrations, or in a mixed metal solution for Npun_R4582- cells. Moreover, overexpression of npun_R4582 increased cellular peroxidase activity in comparison with wild-type and Npun_R4582- cells, and reduced peroxide levels by over 50%. The addition of cobalt, manganese, nickel, and zinc increased the capacity of Npun_R4582 to reduce the rate or total levels of peroxide produced by cells growing under photooxidative conditions. The work presented confirms the function of NpunR4582 as a catalase and provides insights as to how cells reduce potentially lethal peroxide levels produced by photosynthesis. The findings also show how trace elements play crucial roles as enzymatic cofactors and how the role of Npun_R4582 in hydrogen peroxide breakdown is dependent on the type of metal and the level available to cells.


Assuntos
Catalase/metabolismo , Coenzimas/metabolismo , Metais/metabolismo , Nostoc/enzimologia , Nostoc/metabolismo , Peróxidos/metabolismo , Catalase/genética , Deleção de Genes , Expressão Gênica , Perfilação da Expressão Gênica , Peróxidos/toxicidade , Reação em Cadeia da Polimerase em Tempo Real
7.
Mycorrhiza ; 26(8): 863-877, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27448680

RESUMO

Rubber tree (Hevea brasiliensis) is of major economic importance in Southeast Asia and for small land holders in Thailand in particular. Due to the high value of latex, plantations are expanding into unsuitable areas, such as the northeast province of Thailand where soil fertility is very low and therefore appropriate management practices are of primary importance. Arbuscular mycorrhizal fungi (AMF) contribute to plant growth through a range of mechanisms and could play a key role in a more sustainable management of the rubber plantations. We described the diversity of AMF associated with rubber tree roots in Northeast Thailand in relation to tree age and soil parameters along a chronosequence of rubber tree plantations. Cassava fields were included for comparison. Rubber tree and cassava roots harbored high diversity of AMF (111 Virtual Taxa, VT), including 20 novel VT. AMF VT richness per sample was consistently high (per site mean 16 to 21 VT per sample) along the chronosequence and was not related to soil properties. The composition of AMF communities differed between cassava and rubber tree plantations and was influenced by soil texture and nutrient content (sand, K, P, Ca). AMF community composition gradually shifted with the age of the trees. Our results suggest that the high diversity of AMF in this region is potentially significant for maintaining high functionality of AMF communities.


Assuntos
Hevea/microbiologia , Micorrizas/genética , Raízes de Plantas/microbiologia , Agricultura , Micorrizas/classificação , Micorrizas/isolamento & purificação , Microbiologia do Solo , Tailândia
8.
Stand Genomic Sci ; 9(3): 473-83, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25197433

RESUMO

Ensifer arboris LMG 14919(T) is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of several species of legume trees. LMG 14919(T) was isolated in 1987 from a nodule recovered from the roots of the tree Prosopis chilensis growing in Kosti, Sudan. LMG 14919(T) is highly effective at fixing nitrogen with P. chilensis (Chilean mesquite) and Acacia senegal (gum Arabic tree or gum acacia). LMG 14919(T) does not nodulate the tree Leucena leucocephala, nor the herbaceous species Macroptilium atropurpureum, Trifolium pratense, Medicago sativa, Lotus corniculatus and Galega orientalis. Here we describe the features of E. arboris LMG 14919(T), together with genome sequence information and its annotation. The 6,850,303 bp high-quality-draft genome is arranged into 7 scaffolds of 12 contigs containing 6,461 protein-coding genes and 84 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

9.
Stand Genomic Sci ; 9(3): 484-94, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25197434

RESUMO

Burkholderia mimosarum strain LMG 23256(T) is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Mimosa pigra (giant sensitive plant). LMG 23256(T) was isolated from a nodule recovered from the roots of the M. pigra growing in Anso, Taiwan. LMG 23256(T) is highly effective at fixing nitrogen with M. pigra. Here we describe the features of B. mimosarum strain LMG 23256(T), together with genome sequence information and its annotation. The 8,410,967 bp high-quality-draft genome is arranged into 268 scaffolds of 270 contigs containing 7,800 protein-coding genes and 85 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

10.
Stand Genomic Sci ; 9(3): 514-26, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25197437

RESUMO

Ensifer medicae strain WSM1115 forms effective nitrogen fixing symbioses with a range of annual Medicago species and is used in commercial inoculants in Australia. WSM1115 is an aerobic, motile, Gram-negative, non-spore-forming rod. It was isolated from a nodule recovered from the root of burr medic (Medicago polymorpha) collected on the Greek Island of Samothraki. WSM1115 has a broad host range for nodulation and N2 fixation capacity within the genus Medicago, although this does not extend to all medic species. WSM1115 is considered saprophytically competent in moderately acid soils (pH(CaCl2) 5.0), but it has failed to persist at field sites where soil salinity exceeded 10 ECe (dS/m). Here we describe the features of E. medicae strain WSM1115, together with genome sequence information and its annotation. The 6,861,065 bp high-quality-draft genome is arranged into 7 scaffolds of 28 contigs, contains 6,789 protein-coding genes and 83 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

11.
Stand Genomic Sci ; 9(3): 551-61, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25197440

RESUMO

Burkholderia sp. strain WSM2230 is an aerobic, motile, Gram-negative, non-spore-forming acid-tolerant rod isolated from acidic soil collected in 2001 from Karijini National Park, Western Australia, using Kennedia coccinea (Coral Vine) as a host. WSM2230 was initially effective in nitrogen-fixation with K. coccinea, but subsequently lost symbiotic competence. Here we describe the features of Burkholderia sp. strain WSM2230, together with genome sequence information and its annotation. The 6,309,801 bp high-quality-draft genome is arranged into 33 scaffolds of 33 contigs containing 5,590 protein-coding genes and 63 RNA-only encoding genes. The genome sequence of WSM2230 failed to identify nodulation genes and provides an explanation for the observed failure of the laboratory grown strain to nodulate. The genome of this strain is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

12.
Stand Genomic Sci ; 9(3): 1168-80, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25197442

RESUMO

Burkholderia sp. strain WSM2232 is an aerobic, motile, Gram-negative, non-spore-forming acid-tolerant rod that was trapped in 2001 from acidic soil collected from Karijini National Park (Australia) using Gastrolobium capitatum as a host. WSM2232 was effective in nitrogen fixation with G. capitatum but subsequently lost symbiotic competence during long-term storage. Here we describe the features of Burkholderia sp. strain WSM2232, together with genome sequence information and its annotation. The 7,208,311 bp standard-draft genome is arranged into 72 scaffolds of 72 contigs containing 6,322 protein-coding genes and 61 RNA-only encoding genes. The loss of symbiotic capability can now be attributed to the loss of nodulation and nitrogen fixation genes from the genome. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

13.
Stand Genomic Sci ; 9(3): 602-13, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25197447

RESUMO

Ensifer meliloti strain RRI128 is an aerobic, motile, Gram-negative, non-spore-forming rod. RRI128 was isolated from a nodule recovered from the roots of barrel medic (Medicago truncatula) grown in the greenhouse and inoculated with soil collected from Victoria, Australia. The strain is used in commercial inoculants in Australia. RRI128 nodulates and forms an effective symbiosis with a diverse range of lucerne cultivars (Medicago sativa) and several species of annual medic (M. truncatula, Medicago littoralis and Medicago tornata), but forms an ineffective symbiosis with Medicago polymorpha. Here we describe the features of E. meliloti strain RRI128, together with genome sequence information and annotation. The 6,900,273 bp draft genome is arranged into 156 scaffolds of 157 contigs, contains 6,683 protein-coding genes and 87 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

14.
Stand Genomic Sci ; 9: 3, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25780496

RESUMO

Mesorhizobium loti strain R88B was isolated in 1993 in the Rocklands range in Otago, New Zealand from a Lotus corniculatus root nodule. R88B is an aerobic, Gram-negative, non-spore-forming rod. This report reveals the genome of M. loti strain R88B contains a single scaffold of size 7,195,110 bp which encodes 6,950 protein-coding genes and 66 RNA-only encoding genes. This genome does not harbor any plasmids but contains the integrative and conjugative element ICEMlSym(R7A), also known as the R7A symbiosis island, acquired by horizontal gene transfer in the field environment from M. loti strain R7A. It also contains a mobilizable genetic element ICEMladh(R88B), that encodes a likely adhesin gene which has integrated downstream of ICEMlSym(R7A), and three acquired loci that together allow the utilization of the siderophore ferrichrome. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

15.
Stand Genomic Sci ; 9: 4, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25780497

RESUMO

Ensifer medicae Di28 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Medicago spp. Di28 was isolated in 1998 from a nodule recovered from the roots of M. polymorpha growing in the south east of Sardinia (Italy). Di28 is an effective microsymbiont of the annual forage legumes M. polymorpha and M. murex and is capable of establishing a partially effective symbiotic association with the perennial M. sativa. Here we describe the features of E. medicae Di28, together with genome sequence information and its annotation. The 6,553,624 bp standard draft genome is arranged into 104 scaffolds of 104 contigs containing 6,394 protein-coding genes and 75 RNA-only encoding genes. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

16.
Stand Genomic Sci ; 9: 6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25780499

RESUMO

Mesorhizobium loti strain R7A was isolated in 1993 in Lammermoor, Otago, New Zealand from a Lotus corniculatus root nodule and is a reisolate of the inoculant strain ICMP3153 (NZP2238) used at the site. R7A is an aerobic, Gram-negative, non-spore-forming rod. The symbiotic genes in the strain are carried on a 502-kb integrative and conjugative element known as the symbiosis island or ICEMlSym(R7A). M. loti is the microsymbiont of the model legume Lotus japonicus and strain R7A has been used extensively in studies of the plant-microbe interaction. This report reveals that the genome of M. loti strain R7A does not harbor any plasmids and contains a single scaffold of size 6,529,530 bp which encodes 6,323 protein-coding genes and 75 RNA-only encoding genes. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

17.
Stand Genomic Sci ; 9: 5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25780498

RESUMO

Strains of a pink-pigmented Methylobacterium sp. are effective nitrogen- (N2) fixing microsymbionts of species of the African crotalarioid genus Listia. Strain WSM2598 is an aerobic, motile, Gram-negative, non-spore-forming rod isolated in 2002 from a Listia bainesii root nodule collected at Estcourt Research Station in South Africa. Here we describe the features of Methylobacterium sp. WSM2598, together with information and annotation of a high-quality draft genome sequence. The 7,669,765 bp draft genome is arranged in 5 scaffolds of 83 contigs, contains 7,236 protein-coding genes and 18 RNA-only encoding genes. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 G enomic E ncyclopedia for B acteria and A rchaea- R oot N odule B acteria (GEBA-RNB) project.

18.
Stand Genomic Sci ; 9: 7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25780500

RESUMO

Mesorhizobium loti strain NZP2037 was isolated in 1961 in Palmerston North, New Zealand from a Lotus divaricatus root nodule. Compared to most other M. loti strains, it has a broad host range and is one of very few M. loti strains able to form effective nodules on the agriculturally important legume Lotus pedunculatus. NZP2037 is an aerobic, Gram negative, non-spore-forming rod. This report reveals that the genome of M. loti strain NZP2037 does not harbor any plasmids and contains a single scaffold of size 7,462,792 bp which encodes 7,318 protein-coding genes and 70 RNA-only encoding genes. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

19.
Stand Genomic Sci ; 9(2): 220-31, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24976879

RESUMO

Rhizobium leguminosarum bv. trifolii SRDI565 (syn. N8-J) is an aerobic, motile, Gram-negative, non-spore-forming rod. SRDI565 was isolated from a nodule recovered from the roots of the annual clover Trifolium subterraneum subsp. subterraneum grown in the greenhouse and inoculated with soil collected from New South Wales, Australia. SRDI565 has a broad host range for nodulation within the clover genus, however N2-fixation is sub-optimal with some Trifolium species and ineffective with others. Here we describe the features of R. leguminosarum bv. trifolii strain SRDI565, together with genome sequence information and annotation. The 6,905,599 bp high-quality-draft genome is arranged into 7 scaffolds of 7 contigs, contains 6,750 protein-coding genes and 86 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

20.
Stand Genomic Sci ; 9(2): 232-42, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24976880

RESUMO

Rhizobium leguminosarum bv. trifolii SRDI943 (strain syn. V2-2) is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a root nodule of Trifolium michelianum Savi cv. Paradana that had been grown in soil collected from a mixed pasture in Victoria, Australia. This isolate was found to have a broad clover host range but was sub-optimal for nitrogen fixation with T. subterraneum (fixing 20-54% of reference inoculant strain WSM1325) and was found to be totally ineffective with the clover species T. polymorphum and T. pratense. Here we describe the features of R. leguminosarum bv. trifolii strain SRDI943, together with genome sequence information and annotation. The 7,412,387 bp high-quality-draft genome is arranged into 5 scaffolds of 5 contigs, contains 7,317 protein-coding genes and 89 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...