Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38617268

RESUMO

ZF5.3 is a compact, rationally designed mini-protein that escapes efficiently from the endosomes of multiple cell types. Despite its small size (27 amino acids), ZF5.3 can be isolated intact from the cytosol of treated cells and guides multiple classes of proteins into the cytosol and/or nucleus. In the best cases, delivery efficiencies reach or exceed 50% to establish nuclear or cytosolic concentrations of 500 nM or higher. But other than the requirement for unfoldable cargo and an intact HOPS complex, there is little known about how ZF5.3 traverses the limiting endocytic membrane. Here we delineate the attributes of ZF5.3 that enable efficient endosomal escape. We confirm that ZF5.3 is stable at pH values between 5.5 and 7.5, with no evidence of unfolding even at temperatures as high as 95 °C. The high-resolution NMR structure of ZF5.3 at pH 5.5, also reported here, shows a canonical p zinc-finger fold with the penta-arg motif integrated seamlessly into the C-terminal α-helix. At lower pH, ZF5.3 unfolds cooperatively as judged by both circular dichroism and high-resolution NMR. Unfolding occurs upon protonation of a single Zn(II)-binding His side chain whose pKa corresponds almost exactly to that of the late endosomal lumen. pH-induced unfolding is essential for endosomal escape, as a ZF5.3 analog that remains folded at pH 4.5 fails to efficiently reach the cytosol, despite high overall uptake. Finally, using reconstituted liposomes, we identify a high-affinity interaction of ZF5.3 with a specific lipid-BMP-that is selectively enriched in the inner leaflet of late endosomal membranes. This interaction is 10-fold stronger at low pH than neutral pH, providing a molecular picture for why escape occurs preferentially and in a HOPS-dependent manner from late endosomal compartments. The requirements for programmed endosomal escape identified here should aid and inform the design of proteins, peptidomimetics, and other macromolecules that reach cytosolic or nuclear targets intact and at therapeutically relevant concentrations.

2.
J Chem Educ ; 100(1): 134-142, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36649372

RESUMO

The undergraduate transfer process has well-documented challenges, especially for those who identify with groups historically excluded from science, technology, engineering, and mathematics (STEM) programs. Because transfer students gain later access to university networking and research opportunities than first-time-in-college students, transfer students interested in pursuing postbaccalaureate degrees in chemistry have a significantly shortened timeline in which to conduct research, a crucial component in graduate school applications. Mentorship programs have previously been instituted as effective platforms for the transfer of community cultural wealth within large institutions. We report here the design, institution, and assessment of a near-peer mentorship program for transfer students, the Transfer Student Mentorship Program (TSMP). Founded in 2020 by graduate students, the TSMP pairs incoming undergraduate transfer students with current graduate students for personalized mentorship and conducts discussion-based seminars to foster peer relationships. The transfer student participants have access to a fast-tracked networking method during their first transfer semester that can serve as a route for acquiring undergraduate research positions. Program efficacy was assessed via surveys investigating the rates of research participation and sense of belonging of transfer students. We observed that respondents that participated in the program experienced an overall improvement in these measures compared to respondents who did not. Having been entirely designed, instituted, and led by graduate students, we anticipate that this program will be highly tractable to other universities looking for actionable methods to improve their students' persistence in pursuing STEM degrees.

3.
ACS Chem Biol ; 17(12): 3367-3378, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36378277

RESUMO

Protein-based nanoparticles are useful models for the study of self-assembly and attractive candidates for drug delivery. Virus-like particles (VLPs) are especially promising platforms for expanding the repertoire of therapeutics that can be delivered effectively as they can deliver many copies of a molecule per particle for each delivery event. However, their use is often limited due to poor uptake of VLPs into mammalian cells. In this study, we use the fitness landscape of the bacteriophage MS2 VLP as a guide to engineer capsid variants with positively charged surface residues to enhance their uptake into mammalian cells. By combining mutations with positive fitness scores that were likely to produce assembled capsids, we identified two key double mutants with internalization efficiencies as much as 67-fold higher than that of wtMS2. Internalization of these variants with positively charged surface residues depends on interactions with cell surface sulfated proteoglycans, and yet, they are biophysically similar to wtMS2 with low cytotoxicity and an overall negative charge. Additionally, the best-performing engineered MS2 capsids can deliver a potent anticancer small-molecule therapeutic with efficacy levels similar to antibody-drug conjugates. Through this work, we were able to establish fitness landscape-based engineering as a successful method for designing VLPs with improved cell penetration. These findings suggest that VLPs with positive surface charge could be useful in improving the delivery of small-molecule- and nucleic acid-based therapeutics.


Assuntos
Capsídeo , Nanopartículas , Animais , Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Mamíferos/metabolismo
4.
ACS Cent Sci ; 8(4): 473-482, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35505866

RESUMO

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are peptide-derived natural products with potent antibiotic, antiviral, and anticancer properties. RiPP enzymes known as cyclodehydratases and dehydrogenases work together to catalyze intramolecular, inter-residue condensation and dehydrogenation reactions that install oxazoline/oxazole and thiazoline/thiazole heterocycles within ribosomally produced polypeptide chains. Here, we show that the previously reported enzymes MicD-F and ArtGox accept backbone-modified monomers-including aminobenzoic acid derivatives and beta-amino acids-within leader-free polypeptides, even at positions immediately preceding or following the site of cyclization/dehydrogenation. The products are sequence-defined chemical polymers with multiple, diverse non-α-amino acid subunits. We show further that MicD-F and ArtGox can install heterocyclic backbones within protein loops and linkers without disrupting the native tertiary fold. Calculations reveal the extent to which these heterocycles restrict conformational space; they also eliminate a peptide bond-both features could improve the stability or add function to linker sequences now commonplace in emerging biotherapeutics. This work represents a general strategy to expand the chemical diversity of the proteome beyond and in synergy with what can now be accomplished by expanding the genetic code.

5.
J Am Chem Soc ; 143(34): 13538-13547, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34382787

RESUMO

Site-selective protein-protein coupling has long been a goal of chemical biology research. In recent years, that goal has been realized to varying degrees through a number of techniques, including the use of tyrosinase-based coupling strategies. Early publications utilizing tyrosinase from Agaricus bisporus(abTYR) showed the potential to convert tyrosine residues into ortho-quinone functional groups, but this enzyme is challenging to produce recombinantly and suffers from some limitations in substrate scope. Initial screens of several tyrosinase candidates revealed that the tyrosinase from Bacillus megaterium (megaTYR) is an enzyme that possesses a broad substrate tolerance. We use the expanded substrate preference as a starting point for protein design experiments and show that single point mutants of megaTYR are capable of activating tyrosine residues in various sequence contexts. We leverage this new tool to enable the construction of protein trimers via a charge-directed sequential activation of tyrosine residues (CDSAT).


Assuntos
Monofenol Mono-Oxigenase/metabolismo , Tirosina/metabolismo , Bacillus megaterium/enzimologia , Benzoquinonas/química , Benzoquinonas/metabolismo , Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/genética , Mutagênese , Mutagênese Sítio-Dirigida , Multimerização Proteica , Tirosina/química
6.
ACS Cent Sci ; 7(6): 910-916, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34235249

RESUMO

Historically, efforts to improve academic climate have been siloed-many efforts involve the collection of data to understand issues affecting diversity at an institutional level, while others prioritize recruitment and retention of historically marginalized groups. Few initiatives, however, effectively combine the two in order to create concrete action plans to eliminate structural barriers that hinder the retention of minorities in STEM. In this Editorial, we present the history and details of a collaborative effort to improve the academic climate of the Department of Chemistry at University of California, Berkeley. This initiative began in 2016 as a graduate student-led, grassroots movement to develop a method to assess the department's academic climate. Over the past several years-and with support from stakeholders at all levels-it has grown into a department-wide effort to systematically collect data, exchange ideas, and implement goal-oriented interventions to make our academic community more inclusive. With the recent development of a five-year strategic plan and funding increase to provide financial support for student-led programs, we have institutionalized a method to maintain the initiative's momentum. Here, we share our approaches, insights, and perspectives from community members who have shaped this movement. We also provide advice to help other academic communities determine a practical path toward affecting positive cultural change.

7.
Chem Sci ; 12(14): 5185-5195, 2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-34168773

RESUMO

Mechanistic information about how gaseous ions are formed from charged droplets has been difficult to establish because direct observation of nanodrops in a size range relevant to gaseous macromolecular ion formation by optical or traditional mass spectrometry methods is challenging owing to their small size and heterogeneity. Here, the mass and charge of individual aqueous nanodrops between 1-10 MDa (15-32 nm diameter) with ∼50-300 charges are dynamically monitored for 1 s using charge detection mass spectrometry. Discrete losses of minimally solvated singly charged ions occur, marking the first direct observation of ion emission from aqueous nanodrops in late stages of droplet evaporation relevant to macromolecular ion formation in native mass spectrometry. Nanodrop charge depends on the identity of constituent ions, with pure water nanodrops charged slightly above the Rayleigh limit and aqueous solutions containing alkali metal ions charged progressively below the Rayleigh limit with increasing cation size. MS2 capsid ions (∼3.5 MDa; ∼27 nm diameter) are more highly charged from aqueous ammonium acetate than from its biochemically preferred, 100 mM NaCl/10 mM Na phosphate solution, consistent with ion emission reducing the nanodrop and resulting capsid charge. The extent of charging indicates that the capsid partially collapses inside the nanodrops prior to the charging and formation of the dehydrated gaseous ions. These results demonstrate that ion emission can affect macromolecular charging and that conformational changes to macromolecular structure can occur in nanodrops prior to the formation of naked gaseous ions.

8.
ACS Omega ; 6(22): 14410-14419, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34124463

RESUMO

Ongoing efforts to improve diversity in science, technology, engineering, and mathematics (STEM) primarily manifest as attempts to recruit more women and individuals from historically marginalized groups. Yet, these efforts fail to repair the specific, systemic issues within academic communities that hinder diverse individuals from persisting and thriving in STEM. Here, we present the results of a quantitative, multiyear effort to make the academic climate of an R1 STEM department more inclusive. We use a student-led, department-specific, faculty-supported initiative to assess and improve the climate of the Department of Chemistry at the University of California, Berkeley, as a case study. Our results provide quantitative evidence that community discussions grounded in our own data, alongside cooperative community efforts to address the issues present in those data, are effective methods for driving positive change. Longitudinal assessment of our academic climate from 2018 to 2020 via annual department-wide surveys indicates that these interventions have succeeded in shifting the perception of our academic climate. This study confirms the positive outcomes of having a practical, sustainable, and data-driven framework for affecting change within a graduate community.

9.
J Am Chem Soc ; 142(11): 5078-5086, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32093466

RESUMO

Oxidative coupling (OC) through o-quinone intermediates has been established as an efficient and site-selective way to modify protein N-termini and the unnatural amino acid p-aminophenylalanine (paF). Recently, we reported that the tyrosinase-mediated oxidation of phenol-tagged cargo molecules is a particularly convenient method of generating o-quinones in situ. The coupling partners can be easily prepared and stored, the reaction takes place under mild conditions (phosphate buffer, pH 6.5, 4 to 23 °C), and dissolved oxygen is the only oxidant required. Here, we show an important extension of this chemistry for the activation of tyrosine residues that project into solution from the N or C-termini of peptide and protein substrates. Generating the o-quinone electrophiles from tyrosine allows greater flexibility in choosing the nucleophilic coupling partner and expands the scope of the reaction to include C-terminal positions. We also introduce a new bacterial tyrosinase enzyme that shows improved activation for some tyrosine substrates. The efficacy of several secondary amines and aniline derivatives was evaluated in the coupling reactions, providing important information for coupling partner design. This strategy was used to modify the C-termini of an antibody scFv construct and of Protein L, a human IgG kappa light chain binding protein. The use of the modified proteins as immunolabeling agents was also demonstrated.


Assuntos
Proteínas de Bactérias/química , Monofenol Mono-Oxigenase/química , Anticorpos de Cadeia Única/química , Tirosina/química , Bacillus megaterium/enzimologia , Acoplamento Oxidativo , Quinonas/síntese química
10.
J Am Chem Soc ; 141(9): 3875-3884, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30730722

RESUMO

Site-specific protein modification is a widely used strategy to attach drugs, imaging agents, or other useful small molecules to protein carriers. N-terminal modification is particularly useful as a high-yielding, site-selective modification strategy that can be compatible with a wide array of proteins. However, this modification strategy is incompatible with proteins with buried or sterically hindered N termini, such as virus-like particles (VLPs) composed of the well-studied MS2 bacteriophage coat protein. To assess VLPs with improved compatibility with these techniques, we generated a targeted library based on the MS2-derived protein cage with N-terminal proline residues followed by three variable positions. We subjected the library to assembly, heat, and chemical selections, and we identified variants that were modified in high yield with no reduction in thermostability. Positive charge adjacent to the native N terminus is surprisingly beneficial for successful extension, and over 50% of the highest performing variants contained positive charge at this position. Taken together, these studies described nonintuitive design rules governing N-terminal extensions and identified successful extensions with high modification potential.


Assuntos
Bacteriófagos/metabolismo , Proteínas do Capsídeo/biossíntese , Nanopartículas/metabolismo , Engenharia de Proteínas , Bacteriófagos/química , Proteínas do Capsídeo/química , Estrutura Molecular , Nanopartículas/química
11.
J Am Chem Soc ; 141(9): 3885-3892, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30726077

RESUMO

A convenient enzymatic strategy is reported for the modification of proline residues in the N-terminal positions of proteins. Using a tyrosinase enzyme isolated from Agaricus bisporus (abTYR), phenols and catechols are oxidized to highly reactive o-quinone intermediates that then couple to N-terminal proline residues in high yield. Key advantages of this bioconjugation method include (1) the use of air-stable precursors that can be prepared on large scale if needed, (2) mild reaction conditions, including low temperatures, (3) the targeting of native functional groups that can be introduced readily on most proteins, and (4) the use of molecular oxygen as the sole oxidant. This coupling strategy was successfully demonstrated for the attachment of a variety of phenol-derivatized cargo molecules to a series of protein substrates, including self-assembled viral capsids, enzymes, and a chitin binding domain (CBD). The ability of the CBD to bind to the surfaces of yeast cells was found to be unperturbed by this modification reaction.


Assuntos
Monofenol Mono-Oxigenase/metabolismo , Fenóis/metabolismo , Prolina/metabolismo , Quinonas/metabolismo , Agaricus/enzimologia , Modelos Moleculares , Estrutura Molecular , Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/isolamento & purificação , Fenóis/química , Prolina/química , Quinonas/química
12.
Polymers (Basel) ; 8(7)2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30974544

RESUMO

Electrospinning was performed with a blend of commercially available poly(methyl methacrylate) (PMMA) and a sulfur-rich copolymer based on poly(sulfur-statistical-diisopropenylbenzene), which was synthesized via inverse vulcanization. The polysulfide backbone of sulfur-containing polymers is known to bind mercury from aqueous solutions and can be utilized for recycling water. Increasing the surface area by electrospinning can maximize the effect of binding mercury regarding the rate and maximum uptake. These fibers showed a mercury decrease of more than 98% after a few seconds and a maximum uptake of 440 mg of mercury per gram of electrospun fibers. These polymeric fibers represent a new class of efficient water filtering systems that show one of the highest and fastest mercury uptakes for electrospun fibers reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...